a.
\(\lim\left(\sqrt[3]{n^3+2}-\sqrt[]{n^2+n}\right)=\lim\left(\sqrt[3]{n^3+2}-n+n-\sqrt[]{n^2+n}\right)\)
\(=\lim\left(\dfrac{2}{\sqrt[3]{\left(n^3+2\right)^2}+n\sqrt[3]{n^3+n}+n^2}-\dfrac{n}{n+\sqrt[]{n^2+n}}\right)\)
\(=\lim\left(\dfrac{2}{\sqrt[3]{\left(n^3+2\right)^2}+n\sqrt[3]{n^3+2}+n^2}-\dfrac{1}{1+\sqrt[]{1+\dfrac{1}{n}}}\right)\)
\(=0-\dfrac{1}{1+1}=-\dfrac{1}{2}\)
b.
\(\lim\limits_{x\rightarrow2}\dfrac{\sqrt[]{x+2}+\sqrt[]{3x-2}-2x}{x-2}=\lim\limits_{x\rightarrow2}\dfrac{\sqrt[]{x+2}-2+\sqrt[]{3x-2}-2-2x+4}{x-2}\)
\(=\lim\limits_{x\rightarrow2}\dfrac{\dfrac{x-2}{\sqrt[]{x+2}+2}+\dfrac{3\left(x-2\right)}{\sqrt[]{3x-2}+2}-2\left(x-2\right)}{x-2}\)
\(=\lim\limits_{x\rightarrow2}\left(\dfrac{1}{\sqrt[]{x+2}+2}+\dfrac{3}{\sqrt[]{3x-2}+2}-2\right)=-1\)