Phương trình : \(x^2-2mx+2m-3=0\left(1\right)\)
Xét : \(\Delta=m^2-\left(2m-3\right)=m^2-2m+3=m^2-2m+1+2=\left(m-1\right)^2+2>0,\forall m\)
=> Phương trình 1 luôn có 2 ngiệm phân biệt x1, x2
\(A=x_1^2+x_2^2=x_1^2+2x_1x_2+x_2^2-2x_1x_2=\left(x_1+x_2\right)^2-2x_1x_2\)
Áp dụng định lí Vi ét cho phương trình (1) Ta có:
x1+x2=2m; x1.x2=2m-3
Khi đó: \(A=\left(2m\right)^2-2.\left(2m-3\right)=\left(2m\right)^2-2.2m+1+5=\left(2m-1\right)^2+5\ge5\)
'=" xảy ra <=> 2m-1=0 <=> m=1/2
Vậy : min A=5 khi và chỉ khi m=1/2