\(\sqrt{1+2+3+..+\left(n-1\right)+n+\left(n-1\right)+...+3+2+1}\)
\(=\sqrt{2\left[1+2+3+...+\left(n-1\right)+n\right]-n}\)
\(=\sqrt{2.\left(n+1\right).n:2-n}\)
\(=\sqrt{n\left(n+1\right)-n}\)
\(=\sqrt{n^2+n-n}\)
\(=\sqrt{n^2}\)
\(=n\)
\(\sqrt{1+2+3+..+\left(n-1\right)+n+\left(n-1\right)+...+3+2+1}\)
\(=\sqrt{2\left[1+2+3+...+\left(n-1\right)+n\right]-n}\)
\(=\sqrt{2.\left(n+1\right).n:2-n}\)
\(=\sqrt{n\left(n+1\right)-n}\)
\(=\sqrt{n^2+n-n}\)
\(=\sqrt{n^2}\)
\(=n\)
10. CMR:
\(\sqrt{1+2+3+...+\left(n-1\right)+n+\left(n-1\right)+...+3+2+1}\) = n
giúp mình với
mình thank you các bạn rất nhiều!
Chứng minh rằng với mọi n thuộc N* thì:
\(\sqrt{1+2+3+...+\left(n-1\right)+n+\left(n-1\right)+...+3+2+1}=n\)
Bài rất easy,sau 1 tiếng,không ai giải thì mình sẽ giải
Chứng minh rằng:\(\sqrt{1+2+3+...+\left(n+1\right)+n+\left(n-1\right)+...+3+2+1}\)=n
Chứng minh:
\(\sqrt{1^3+2^3+3^3+...+\left(n-2\right)^3+\left(n-1\right)^3+n^3}=1+2+3+...+\left(n-2\right)+\left(n-1\right)+n\)
Chứng tỏ rằng:
\(\sqrt{1+2+3...+\left(n-1\right)+n+\left(n-1\right)+...+3+2+1}=n\)
Giair hộ mk với mk đg cần gấp
Với mọi số tự nhiên n > 2 . Chứng minh rằng \(\frac{1}{\left(n-1\right).n.\left(n+1\right)}=\frac{1}{2}\left[\frac{1}{\left(n-1\right).n}-\frac{1}{n.\left(n+1\right)}\right]\)
CHỨNG MINH RẰNG: \(\sqrt{1^3+2^3+3^3+...+n^3}=\frac{\left(n+1\right)n}{2}\) VỚI MỌI \(n\inℕ^∗\)
Chứng minh:
\(\sqrt{1+2+............+\left(n-1\right)+n+\left(n-1\right)+\left(n-2\right)+..........+2+1}=n\) =n
Với n thuộc \(ℕ^∗\)
Chứng minh \(\sqrt{1+2+3+4+...+\left(n-1\right)+n+\left(n-1\right)+...+3+2+1}=n\)