Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Mèo Dương

loading...

giúp mik gải nốt bài này vskhocroikhocroi

Nguyễn Việt Lâm
25 tháng 1 lúc 21:59

a.

Do C là giao điểm 2 tiếp tuyến tại A và M 

\(\Rightarrow AC=MC\)

Tương tự có \(BD=MD\)

\(\Rightarrow AC+BD=MC+MD=CD\)

2.

Cũng theo t/c hai tiếp tuyến cắt nhau ta có:

\(\left\{{}\begin{matrix}\widehat{COA}=\widehat{COM}\\\widehat{DOB}=\widehat{DOM}\end{matrix}\right.\)

\(\Rightarrow\widehat{COA}+\widehat{COM}+\widehat{DOB}+\widehat{DOM}=2\left(\widehat{COM}+\widehat{DOM}\right)\)

\(\Rightarrow180^0=2\widehat{COD}\)

\(\Rightarrow\widehat{COD}=90^0\)

Hay tam giác COD vuông tại O

Trong tam giác vuông COD, do CD là tiếp tuyến tại M \(\Rightarrow OM\perp CD\)

\(\Rightarrow OM\) là đường cao ứng với cạnh huyền

Áp dụng hệ thức lượng:

\(OM^2=CM.MD\Rightarrow R^2=AC.BD\) (do \(AC=CM;BD=MD\))

Nguyễn Việt Lâm
25 tháng 1 lúc 22:10

3.1

Theo cmt ta có \(AC=MC\)

Lại có \(OA=OM=R\)

\(\Rightarrow OC\) là trung trực của AM

\(\Rightarrow OC\perp AM\) tại E

\(\Rightarrow\widehat{OEM}=90^0\)

Hoàn toàn tương tự ta có \(\widehat{OFM}=90^0\)

\(\Rightarrow OEMF\) là hình chữ nhật (tứ giác vó 3 góc vuông)

3.2

\(OM\perp CD\Rightarrow\Delta OCM\) vuông tại M

\(ME\perp OC\Rightarrow ME\) là đường cao trong tam giác vuông OCM

Áp dụng hệ thức lượng:

\(OM^2=OE.OC\Rightarrow OE.OC=R^2\)

Hoàn toàn tương tự ta có: \(OM^2=OF.OD\)

\(\Rightarrow OE.OC=OF.OD=R^2\)

3.3

Do OC là trung trực AM (chứng minh câu 3.1) \(\Rightarrow E\) là trung điểm AM

Tương tự ta có F là trung điểm BM

\(\Rightarrow EF\) là đường trung bình tam giác MAB

\(\Rightarrow EF||AB\)

Mà \(AB\perp BD\) (do BD là tiếp tuyến tại B)

\(\Rightarrow EF\perp BD\)

3.4

Gọi G là trung điểm CD.

Do tam giác COD vuông tại O (theo cm câu 2) \(\Rightarrow\) G là tam đường tròn ngoại tiếp tam giác COD

Hay \(GO\) là 1 bán kính của đường tròn đường kính CD (1)

\(CA\) và BD cùng vuông góc AB \(\Rightarrow CA||BD\Rightarrow ACDB\) là hình thang

O là trung điểm AB, G là trung điểm CD \(\Rightarrow OG\) là đường trung bình hình thang ACDB

\(\Rightarrow GO||DB\Rightarrow GO\perp AB\) tại G (2)

(1);(2)\(\Rightarrow AB\) là tiếp tuyến của đường tròn đường kính CD

Nguyễn Việt Lâm
25 tháng 1 lúc 22:11

loading...


Các câu hỏi tương tự
Katoritomoyo
Xem chi tiết
Mèo Dương
Xem chi tiết
nguyễn hà quyên
Xem chi tiết
Ánh2103
Xem chi tiết
Mèo Dương
Xem chi tiết
Mèo Dương
Xem chi tiết
Phạm Mạnh Kiên
Xem chi tiết
angela nguyễn
Xem chi tiết
✿.。.:* ☆:**:.Lê Thùy Lin...
Xem chi tiết