1: Xét tứ giác ADCE có
AE//CD
AE=CD
Do đó: ADCE là hình bình hành
mà DA=DC
nên ADCE là hình thoi
1: Xét tứ giác ADCE có
AE//CD
AE=CD
Do đó: ADCE là hình bình hành
mà DA=DC
nên ADCE là hình thoi
Giúp em với ạ
Cho hình thang ABCD có AB//CD: AB= 2CD và CD= AD. Gọi E là trung điểm của AB và F là điểm đối xứng với C qua E.
1. Chứng minh tứ giác ADCE là hình thoi.
2. Chứng minh tứ giác ACBF là hình vuông.
3. Tính S= SADC+ SACBF biết AD= 5cm: BC= 8cm.
Giúp mình với,giải chi tiết cho mình nha!
Bài 2: Cho hình thang ABCD (AB//CD).Gọi E,F lần lượt là trung điểm của AD và BC. Gọi K là giao điểm của AC và EF
a. CM: AK = KC.
b. Biết AB = 4cm, CD = 10cm. Tính các độ dài EK, KF
Bài 3. Cho tam giác ABC. Gọi D, M, E theo thứ tự là trung điểm của AB, BC, CA.
a. CM: Tứ giác ADME là hình bình hành.
b. Nếu tam giác ABC cân tại A thì tứ giác ADME là hình gì? Vì sao?
c. Nếu tam giác ABC vuông tại A thì tứ giác ADME là hình gì? Vì sao?
d. Trong trường hợp tam giác ABC vuông tại A, cho biết AB = 6cm, AC = 8cm, tính độ
dài AM.
Bài 4: Cho hình bình hành ABCD có AD = 2AB, Ẩ = 60°. Gọi E và F lần lượt là trung
điểm của BC và AD.
a. Chứng minh AE vuông góc BF
b. Chứng minh tứ giác BFDC là hình thang cân.
c. Lấy điểm M đối xứng của A qua B. Chứng minh tứ giác BMCD là hình chữ nhật.
d. Chứng minh M, E, D thẳng hàng.
Bài 5: Cho tam giác ABC vuông tại A có góc ABC= 60°, kẻ tia Ax song song với BC.
Trên Ax lấy điểm D sao cho AD = DC.
a. Tính các góc BAD và DAC.
b. Chứng minh tứ giác ABCD là hình thang cân.
c. Gọi E là trung điểm của BC. Chứng minh tứ giác ADEB là hình thoi.
d. Cho AC = 8cm, AB = 5cm. Tính diện tích hình thoi ABED
Bài 1: Cho tứ giác ABCD có BC = AD và BC không song song với AD, gọi M, N,
P, Q, E, F lần lượt là trung điểm của các đoạn thẳng AB, BC, CD, DA, AC, BD.
a) Chứng minh tứ giác MEPF là hình thoi.
b) Chứng minh các đoạn thẳng MP, NQ, EF cùng cắt nhau tại một điểm.
c) Tìm thêm điều kiện của tứ giác ABCD để N, E, F, Q thẳng hàng
Bài 2: Cho tam giác ABC vuông tại A (AB<AC), M là trung điểm BC, từ M kẻ
đường thẳng song song với AC, AB lần lượt cắt AB tạt E, cắt AC tại F
a) Chứng minh EFCB là hình thang
b) Chứng minh AEMF là hình chữ nhật
c) Gọi O là trung điểm AM. Chứng minh: E và F đối xứng qua O.
d) Gọi D là trung điểm MC. Chứng minh: OMDF là hình thoi
Bài 3: Cho tam giác ABC có AB<AC. Gọi M, N, P lần lượt là trung điểm của AB,
AC, BC. Vẽ đường cao AH của tam giác ABC. Tứ giác HMNP là hình gì.
Bài 4: Cho tứ giác ABCD có góc DAB = góc BCD = 120 0 . Tính số đo của hai góc
còn lại để ABCD là hình bình hành.
Bài 5: Cho hình bình hành ABCD. Trên đưởng chéo AC chọn hai điểm E và F sao
cho AE=EF=FC.
a) Tứ giác BEDF là hình gì?
b) Chứng minh CFDAEB .
c) Chứng minh CFBEAD .
Bài 6: Cho tam giác ABC cân tại A, đường cao AD. Gọi E là điểm đối xứng với D qua
trung điểm M của AC.
a) Tứ giác ADCE là hình gì? Vì sao?
b) Tứ giác ABDM là hình gì? Vì sao?
c) Tam giác ABC có thêm điều kiện gì thì ADCE là hình vuông?
d) Tam giác ABC có thêm điều kiện gì thì ABDM là hình thang cân?
Cho hình thang ABCD (AB // CD), có 𝟾 = 𝟾 = 90 0 và CD AB AD 2 . Kẻ BE vuông góc với CD (ECD). a) Chứng minh rằng tứ giác ABED là hình vuông. b) Gọi I là trung điểm của BE. Chứng minh tứ giác ABCE là hình bình hành, từ đó suy ra điểm A đối xứng với điểm C qua I. c) Kẻ DH vuông góc với AC (HAC), AE cắt DH tại M và AE cắt DI tại N. Chứng minh tứ giác DMBN là hình thoi.
+ Cho hình thang vuông ABCD (AB // CD, A = D = 90°) có AD = CD = 2AB. Gọi E là điểm đối xứng của A qua B.
a) Chứng minh AE = 2AB và tứ giác AECD là hình vuông.
b) Gọi M là trung điểm của EC và I là giao điểm của BC và DM. Chứng minh diện tích tam giác DIC bằng diện tích tứ giác EBIM.
c) Biết DA và CB cắt nhau tại V. Gọi N là hình chiếu của I trên AD. Chứng minh: NI^2 = ND.NV.
Cho tam giác ABC có 3 góc nhọn. Gọi E,F lần lượt là trung điểm AB, AC.
a) Chứng minh tứ giác EFCB là hình thang và tính BC biết EF = 5cm
b) Gọi D là điểm đối xứng với F qua E. Chứng minh tứ giác DFCB là hình bình hành
c) CE cắt AD tại I. Chứng minh AI = 3ID
Cho hình thang ABCD (AB // CD). Gọi E, F, K, M lần lượt là trung điểm của BD, AC, CD, AB.
a) Chứng minh: tứ giác AFKD là hình thang và tứ giác KEMF là hình bình hành.
b) Chứng minh: EF // CD.
c) Đường thẳng qua E vuông góc với AD và đường thẳng qua F vuông góc với BC cắt nhau tại H. Chứng minh: tam giác HCD là tam giác cân.
Bài 1: Cho hình bình hành ABCD có BC = 2AB, Â =60 0 . gọi E, F theo thứ tự là trung điểm của BC,
AD. Gọi I là điểm đối xứng với A qua B.
a) Tứ giác ABEF là hình gì? Vì sao?
b) Tứ giác AIEF là hình gì? Vì sao?
c) Tứ giác BICD là hình gì? Vì sao?
d) Tính số đo góc AED.
Bài 2: Cho hình thang ABCD(AB // CD). Gọi E, F theo thứ tự là trung điểm của AB, CD. Gọi O là
trung điểm của EF. Qua O kẻ đường thẳng song song với AB, cắt AD và BC theo thứ tự ở M và N.
a) Tứ giác EMFN là hình gì? Vì sao?
b) Hình thang ABCD có thêm điều kiện gì thì EMFN là hình thoi?
c) Hình thang ABCD có thêm điều kiện gì thì EMFN là hình vuông?
Help me
GIÚP MÌNH VỚI !!!!
Cho ABC vuông tại A có M, N, P lần lượt là trung điểm AB, BC và AC. Lấy D là điểm đối xứng với C qua M.
Chứng minh tứ giác ADBC là hình bình hành.
Chứng minh tứ giác AMNP là hình chữ nhật.
Gọi E là trung điểm AD. Chứng minh tứ giác AEBN là hình thoi.
Đường thẳng qua C và vuông góc với BC cắt AB tại F. Chứng minh PE vuông góc PF.