\(9,\tan B=\dfrac{AC}{AB}=\dfrac{4}{3}\left(B\right)\\ 10,A=\dfrac{x-4\sqrt{x}+4\sqrt{x}+16}{\left(\sqrt{x}-4\right)\left(\sqrt{x}+4\right)}\cdot\dfrac{\sqrt{x}+4}{x+16}\\ A=\dfrac{x+16}{\left(\sqrt{x}-4\right)\left(x+16\right)}=\dfrac{1}{\sqrt{x}-4}\left(A\right)\\ 11,B=\dfrac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)-\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)^2}\cdot\dfrac{\left(x-1\right)^2}{2}\\ B=\dfrac{x-\sqrt{x}-2-x-\sqrt{x}+2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)^2}\cdot\dfrac{\left(\sqrt{x}-1\right)^2\left(\sqrt{x}+1\right)^2}{2}\\ B=\dfrac{-2\sqrt{x}\left(\sqrt{x}-1\right)}{2}=-\sqrt{x}\left(\sqrt{x}-1\right)\\ B>0\Leftrightarrow\sqrt{x}-1< 0\left(-\sqrt{x}< 0\right)\\ \Leftrightarrow0\le x< 1\left(D\right)\)