Gieo một đồng tiền xu cân đối và đồng chất bốn lần. Tính xác suất để cả bốn lần đều xuất hiện mặt sấp.
A. 4 16
B. 2 16
C. 1 16
D. 6 16
Gieo một đồng tiền xu cân đối đồng chất 3 lần. Gọi A i là biến cố: "Mặt sấp xuất hiện ở lần gieo thứ i" với i = 1 , 2 , 3 . Khi biến cố A 1 ¯ ∪ A 2 ¯ ∪ A 3 ¯ là biến cố
A. "Cả 3 lần gieo đều được mặt sấp".
B. "Mặt sấp xuất hiện không quá một lần ".
C. "Mặt ngửa xuất hiện ít nhất một lần ".
D. "Cả 3 lần gieo đều được mặt ngửa ".
Gieo một con xúc sắc cân đối, đồng chất hai lần. Xác suất để cả hai lần đều xuất hiện mặt sáu chấm bằng
A. 1 36
B. 5 36
C. 35 36
D. 31 36
Gieo một con súc sắc cân đối đồng chất một lần. Xác xuất để xuất hiện mặt chẵn
A. 1 2
B. 1 6
C. 1 4
D. 1 3
Kết quả (b,c) của việc gieo con súc sắc cân đối và đồng chất hai lần (trong đó b là số chấm xuất hiện trong lần gieo đầu, c là số chấm xuất hiện ở lần gieo thứ hai) được thay vào phương trình x 2 + b x + c x + 1 = 0 * . Xác suất để phương trình (*) vô nghiệm là :
A. 17 36 .
B. 1 2 .
C. 1 6 .
D. 19 36 .
Gieo một con súc sắc cân đối và đồng chất ba lần liên tiếp. Gọi P là tích ba số ở ba lần tung (mỗi số là số chấm trên mặt xuất hiện ờ mỗi lần tung), tính xác suất sao cho P không chia hết cho 6.
A. 82 216
B. 90 216
C. 83 216
D. 60 216
Gieo hai con xúc sắc cân đối và đồng chất 1 lần. Mỗi con xúc sắc có số chấm các mặt là 1,2,3,4,5,6, con xúc sắc còn lại có số chấm các mặt là 2,3,4,5,6,6. Tính xác suất để tổng số chấm xuất hiện bằng
A. 5/36
B. 1/5
C. 6/35
D. 1/6
Kết quả (b; c) của việc gieo một con súc sắc cân đối và đồng chất hai lần liên tiếp, trong đó b là số chấm xuất hiện của lần gieo thứ nhất, c là số chấm xuất hiện của lần gieo thứ hai được thay vào phương trình bậc hai x 2 + b x + c = 0 . Xác suất để phương trình bậc hai đó vô nghiệm là
A. 7 12
B. 17 36
C. 23 36
D. 5 36
Gieo một con súc sắc cân đối và đồng chất. Giả sử súc sắc xuất hiện mặt b chấm. Tính xác suất để phương trình x 2 + b x + 2 = 0 có hai nghiệm phân biệt?
A. 1 3 .
B. 1 2 .
C. 2 3 .
D. 1 6 .