Đáp án B
Không gian mẫu là 1 , 2 , 3 , 4 , 5 , 6
Số kết quả thuận lợi cho biến cố là 2 , 3 , 5
Vậy xác suất cần tính bằng 3 6 = 1 2
Đáp án B
Không gian mẫu là 1 , 2 , 3 , 4 , 5 , 6
Số kết quả thuận lợi cho biến cố là 2 , 3 , 5
Vậy xác suất cần tính bằng 3 6 = 1 2
Gieo một con súc sắc cân đối và đồng chất hai lần liên tiếp. Tính xác suất để 1) lần thứ nhất được số chấm chẵn và lần thứ hai được số chấm lẻ. 2) hai lần gieo có số chấm như nhau. 3) mặt 6 chấm xuất hiện ít nhất một lần. 4) tổng số chấm xuất hiện trong hai lần gieo bé hơn 10.
Mỗi lượt ta gieo một con xúc sắc (loại 6 mặt, cân đối), và một đồng xu (cân đối). Tính xác xuất để trong 3 lượt gieo như vậy, có ít nhất một lượt gieo được kết quả con xúc sắc xuất hiện mặt 1 chấm, đồng thời đồng xu xuất hiện mặt sấp
A.
B.
C.
D.
Gieo 3 con súc sắc cân đối, đồng chất và quan sát số chấm xuất hiện. Khi đó:
b) Xác suất để tổng số chấm xuất hiện trên mặt ba con súc sắc bằng 12 là:
A. 25/216
B. 1/8
C. 1/6
D. 1/3
Gieo một con xúc sắc cân đối và đồng chất một lần. Giả sử con xúc sắc xuất hiện mặt k chấm. Xét phương trình . Tính xác suất để phương trình trên có 3 nghiệm thực phân biệt
A.
B.
C.
D.
Gieo ba con súc sắc cân đối và đồng chất. Xác suất để số chấm xuất hiện trên ba mặt lập thành một cấp số cộng với công sai bằng 1 là
Gieo một con súc sắc cân đối và đồng chất, xác suất để mặt có số chấm chẵn xuất hiện là
Gieo một con súc sắc cân đối và đồng chất, xác suất để mặt có số chấm chẵn xuất hiện là:
A . 1
B . 1 2
C . 1 3
D . 2 3
Gieo 3 con súc sắc cân đối, đông chất và quan sát số chấm xuất hiện. Xác suất để tổng số chấm xuất hiện trên mặt ba con súc sắc bằng 10 là:
A. 1/36
B.1/8
C.1/6
D.1/3
Gieo một con súc sắc cân đối và đồng chất. Giả sử con súc sắc xuất hiện mặt b chấm. Tính xác suất sao cho phương trình (x là ẩn số) có nghiệm lớn hơn 3.
A.
B.
C.
D.