Gieo một con xúc sắc 4 lần. Tìm xác suất của biến cố
A: “ Mặt 4 chấm xuất hiện ít nhất một lần”
A. P ( A ) = 1 − 5 6 4
B. P ( A ) = 1 − 1 6 4
C. P ( A ) = 3 − 5 6 4
D. P ( A ) = 2 − 5 6 4
Gieo ngẫu nhiên hai con súc sắc cân đối và đồng chất a, mô tả không gian mẫu b, tính xác suất của biến cố A ,tổng số chấm xuất hiện trên hai con xúc xắc bằng 3 B, hiệu chấm xuất hiện trên hai con xúc xắc bằng 3
Gieo một con xúc sắc 4 lần. Tìm xác suất của biến cố B: “ Mặt 3 chấm xuất hiện đúng một lần”
A. P ( A ) = 5 324
B. P ( A ) = 5 32
C. P ( A ) = 3 − 5 6 4
D. P ( A ) = 2 − 5 6 4
Mỗi lượt ta gieo một con xúc sắc (loại 6 mặt, cân đối), và một đồng xu (cân đối). Tính xác xuất để trong 3 lượt gieo như vậy, có ít nhất một lượt gieo được kết quả con xúc sắc xuất hiện mặt 1 chấm, đồng thời đồng xu xuất hiện mặt sấp
A.
B.
C.
D.
Gieo một con súc sắc cân đối, đồng chất và quan sát số chấm xuất hiện
b) Xác định biến cố A: ”Xuất hiện mặt có số chấm không nhỏ hơn 2”
A. A={1,2}
B. A={2,3}
C. A={2,3,4,5,6}
D. A={3,4,5,6}
Gieo con xúc xắc được chế tạo cân đối và đồng chất 2 lần. Gọi a là số chấm xuất hiện trong lần gieo thứ nhất, b là số chấm xuất hiện trong lần gieo thứ hai. Xác suất để phương trình x 2 + a x + b = 0 có nghiệm bằng
A. 17 36
B. 19 36
C. 1 2
D. 4 9
Gieo ngẫu nhien một con súc sắc cân đối và đồng chất hai lần.
a.Hãy mô tả không gian mẫu.
b.Xác định các biến cố sau.
A: "Tổng số chấm xuất hiện trong hai lần gieo không bé hơn 10"
B: "Mặt 5 chấm xuất hiện ít nhất một lần".
c.Tính P(A), P(B).
Gieo một con xúc sắc cân đối và đồng chất một lần. Giả sử con xúc sắc xuất hiện mặt k chấm. Xét phương trình . Tính xác suất để phương trình trên có 3 nghiệm thực phân biệt
A.
B.
C.
D.
Gieo ngẫu nhiên một con súc sắc 3 lần liên tiếp. Gọi a,b,c lần lượt là số chấm xuất hiện ở 3 lần gieo. Xác suất của biến cố “ số a b c ¯ chia hết cho 45” là
A . 1 216
B . 1 54
C . 1 72
D . 1 108