Đáp án B
Ta có: Không gian mẫu Ω A = 6.6 = 36
Lại có: 12=6+6. Do đó để tổng số chấm xuất hiện bằng 12 thì có 1 cách duy nhất là cả 2 lần đều hiện lên mặt 6. Vậy xác suất cần tìm là p = 1 36
Đáp án B
Ta có: Không gian mẫu Ω A = 6.6 = 36
Lại có: 12=6+6. Do đó để tổng số chấm xuất hiện bằng 12 thì có 1 cách duy nhất là cả 2 lần đều hiện lên mặt 6. Vậy xác suất cần tìm là p = 1 36
Gieo đồng thời hai con súc sắc cân đối và đồng chất. Tính xác suất P để hiệu số chấm trên các mặt xuất hiện của hai con súc sắc bằng 2.
A. P = 1 3
B. P = 2 9
C. P = 1 9
D. P = 1
Một con súc sắc không cân đối, có đặc điểm mặt sáu chấm xuất hiện nhiều gấp hai lần các mặt còn lại. Gieo con súc sắc đó hai lần. Xác suất để tổng số chấm trên mặt xuất hiện trong hai lần gieo lớn hơn hoặc bằng 11 bằng
A. 8 49
B. 4 9
C. 1 12
D. 3 49
Gieo ngẫu nhiên hai con súc sắc cân đối đồng chất. Tính xác suất để tổng số chấm xuất hiện trên hai con súc sắc đó bằng 7
A. 7 12
B. 1 6
C. 1 2
D. 1 3
Gieo đồng thời hai con súc sắc cân đối và đồng chất. Xác suất để tổng số chấm trên mặt xuất hiện của hai con súc sắc đó không vượt quá 5 bằng
A. 2 9
B. 1 6
C. 5 18
D. 5 12
Gieo đồng thời hai con súc sắc. Xác suất để số chấm trên mặt xuất hiện của cả hai con súc sắc đều là số chẵn bằng
A. 1 4
B. 1 12
C. 1 36
D. 1 6
Gieo một con súc sắc cân đối và đồng chất. Giả sử súc sắc xuất hiện mặt b chấm. Tính xác suất để phương trình x 2 + b x + 2 = 0 có hai nghiệm phân biệt?
A. 1 3 .
B. 1 2 .
C. 2 3 .
D. 1 6 .
Gieo đồng thời hai con súc sắc cân đối và đồng chất. Xác suất tổng số chấm trên mặt xuất hiện của hai con súc sắc đó không vượt quá 5 bằng:
A. 5 12
B. 1 4
C. 2 9
D. 5 18
Gieo ba con súc sắc cân đối và đồng chất. Xác suất để số chấm xuất hiện trên ba mặt lập thành một cấp số cộng với công sai bằng 1 là
A. 1 6
B. 1 36
C. 1 9
D. 1 27
Gieo một con súc sắc cân đối và đồng chất. Giả sử con súc sắc xuất hiện mặt b chấm. Tính xác suất sao cho phương trình x 2 - b x + b - 1 = 0 (x là ẩn số) có nghiệm lớn hơn 3.
A. 1 3
B. 5 6
C. 2 3
D. 1 2