ta có y=4=4x^2=>x^2=1=>y=1;-1
=>x1=1;y1=4;x2=-1;y2=4
=>x1y2+x2y1=1*4+ -1*4=0
ta có y=4=4x^2=>x^2=1=>y=1;-1
=>x1=1;y1=4;x2=-1;y2=4
=>x1y2+x2y1=1*4+ -1*4=0
cho Parabol (P):y=`x^2`, (d):y=mx-m+2. Tìm m để (d) cắt (P) ở 2 điểm phân biệt \(M\left(x_1;y_1\right)\) và \(N\left(x_2;y_2\right)\) thỏa mãn \(x_1y_2+x_2y_1-15=0\)
Trong mặt phẳng tọa độ Oxy cho đường thẳng (d):y=2x-2m+2 và parabol (P):y=x^2
a,Xác định các tọa độ giao điiểm của parabol (P)tại 2 điểm (d) khi m=-1/2
b,Tìm m để đường thẳng (d) vắt parabol (P) tại 2 điểm phân biệt \(A\left(x;y\right);B\left(x_2;y_2\right)\) sao cho \(y_1+y_2=4\left(x_1+x_2\right)\)
trong mặt phẳng tọa độ Oxy
(d):y=2x-m+1 và parabol (P):y=`1/2 x^2`
Tìm m để (d) cắt (P) tại 2 điểm phân biệt có tọa độ \(\left(x_1;y_1\right),\left(x_2;y_2\right)\) sao cho \(x_1x_2\left(y_1+y_2\right)+48=0\)
Trong mặt phẳng tọa độ cho hai điểm A \(\left(x_1;y_1\right)\) , \(B\left(x_2;y_2\right)\) . Chứng minh rằng:
Nếu đường thẳng y = ax + b đi qua A và B thì \(\frac{y-y_1}{y_2-y_1}=\frac{x-x_1}{x_2-x_1}\) .
Trong mptđ Oxy, cho đường thẳng \(\left(d\right):y=2x-a+1\) và parabol \(\left(P\right):y=\frac{1}{2}x^2\)
a. Tìm a để đường thẳng a đi qua điểm A(-1;3)
b. Tìm a để (d) cắt (P) tại hai điểm phân biệt có tọa độ \(\left(x_1;y_1\right)\)và \(\left(x_2;y_2\right)\)thỏa mãn điều kiện \(x_1x_2\left(y_1+y_2\right)+48=0\)
1)Cho các số thực \(x_1,x_2,x_3\)và \(y_1,y_2,y_3\)thỏa mãn \(x_1\le x_2\le x_3,y_1\le y_2\le y_3\).Chứng minh rằng \(\left(x_1+x_2+x_3\right)\left(y_1+y_2+y_3\right)\le3\left(x_1y_1+x_2y_2+x_3y_3\right)\)
2)Với các số thực x,y,z tùy ý thỏa mãn \(1< x\le y\le z\).Chứng minh rằng:
\(\frac{x^{2017}+y^{2017}+z^{2017}}{x^{2018}+y^{2018}+z^{2018}}\le\frac{3}{x+y+z}\)
Trong MPTĐ cho hai điểm \(A\left(x_1;y_1\right),B\left(x_2;y_2\right)\)
a, CMR: Khoảng cách \(AB=\sqrt{\left(x_1-x_2\right)^2+\left(y_1-y_2\right)^2}\)
b, Tìm khoảng cách giữa các điểm trên MPTĐ. Biết rằng :
a) A(1 ; 2) và B(3 ; 5)
b) M(-2 ; 1) và N(2;3)
Trong mặt phẳng Oxy cho hai đường thẳng có phương trình \(y=-\frac{3}{4}x+2\frac{1}{2}\) (1) và \(y=\frac{4}{5}x+\frac{7}{2}\) (2)
a) Vẽ đồ thị của hai hàm số trên.
b) Tìm tọa độ giao điểm \(A\left(x_A;y_A\right)\) của hai đồ thị trên (Để kết quả dưới dạng phân số)
c) Tính các góc trong tam giác ABC. Trong đó B, C thứ tự là giao điểm của hàm số (1) và hàm số (2) với trục hoành( Lấy nguyên kết quả trên máy).
(Đây là đề Casio nha)
Cho hàm số y= -2x - 4 (d) và y= x +4 (d')
a) Vẽ đồ thị hai hàm số trên cùng mặt phẳng toạ độ ?
b) Gọi giao điểm của đường thẳng (d) và (d') với trục Oy lằn lượt là A;B và gọi giao điểm của hai ₫ường thẳng là C . Xác định toạ độ điểm C và tính diện tích tam giác ABC
c) Tính các góc của tam giác ABC