Phương trình hoành độ giao điểm là:
\(x^2=mx-m+2\)
=>\(x^2-mx+m-2=0\)
\(\text{Δ}=\left(-m\right)^2-4\cdot1\cdot\left(m-2\right)\)
\(=m^2-4m+8\)
\(=\left(m-2\right)^2+4>0\forall m\)
=>(P) luôn cắt (d) tại hai điểm phân biệt
Theo Vi-et, ta có:
\(\left\{{}\begin{matrix}x_1+x_2=-\dfrac{b}{a}=\dfrac{-\left(-m\right)}{1}=m\\x_1\cdot x_2=\dfrac{c}{a}=m-2\end{matrix}\right.\)
\(x_1y_2+x_2y_1-15=0\)
=>\(x_1\cdot x_2^2+x_2\cdot x_1^2-15=0\)
=>\(x_1x_2\left(x_1+x_2\right)-15=0\)
=>\(m\left(m-2\right)-15=0\)
=>\(m^2-2m-15=0\)
=>(m-5)(m+3)=0
=>\(\left[{}\begin{matrix}m=5\left(nhận\right)\\m=-3\left(nhận\right)\end{matrix}\right.\)