Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Lizy

cho Parabol (P):y=`x^2`, (d):y=mx-m+2. Tìm m để (d) cắt (P) ở 2 điểm phân biệt  \(M\left(x_1;y_1\right)\) và \(N\left(x_2;y_2\right)\) thỏa mãn \(x_1y_2+x_2y_1-15=0\)

Nguyễn Lê Phước Thịnh
24 tháng 1 2024 lúc 22:06

Phương trình hoành độ giao điểm là:

\(x^2=mx-m+2\)

=>\(x^2-mx+m-2=0\)

\(\text{Δ}=\left(-m\right)^2-4\cdot1\cdot\left(m-2\right)\)

\(=m^2-4m+8\)

\(=\left(m-2\right)^2+4>0\forall m\)

=>(P) luôn cắt (d) tại hai điểm phân biệt

Theo Vi-et, ta có:

\(\left\{{}\begin{matrix}x_1+x_2=-\dfrac{b}{a}=\dfrac{-\left(-m\right)}{1}=m\\x_1\cdot x_2=\dfrac{c}{a}=m-2\end{matrix}\right.\)

\(x_1y_2+x_2y_1-15=0\)

=>\(x_1\cdot x_2^2+x_2\cdot x_1^2-15=0\)

=>\(x_1x_2\left(x_1+x_2\right)-15=0\)

=>\(m\left(m-2\right)-15=0\)

=>\(m^2-2m-15=0\)

=>(m-5)(m+3)=0

=>\(\left[{}\begin{matrix}m=5\left(nhận\right)\\m=-3\left(nhận\right)\end{matrix}\right.\)