Em có cách này nhưng ko chắc đâu nha!
a) ĐK: x>-4
Đặt \(\sqrt{2x^2+x+9}=a>0;\sqrt{2x^2-x+1}=b>0\) thì:
\(a^2-b^2=2x+8>0\Rightarrow a>b\) (*)
\(PT\Leftrightarrow a+b=\frac{a^2-b^2}{2}\Rightarrow2\left(a+b\right)=a^2-b^2\)
\(\Leftrightarrow\left(a-b\right)\left(a+b\right)=2\left(a+b\right)\)
\(\Leftrightarrow\left(a+b\right)\left(a-b-2\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}a=-b\left(1\right)\\a-b=2\left(2\right)\end{cases}}\).
*Giải (1): Ta có; a = -b < b (do b >0), mâu thuẫn với (*), loại.
*Giải (2): \(\Leftrightarrow a=b+2\Leftrightarrow a^2=b^2+4b+4\)
\(\Leftrightarrow2\left(x+4\right)=4\sqrt{2x^2-x+1}+4\)
\(\Leftrightarrow\left(x+2\right)=2\sqrt{2x^2-x+1}\)
\(\Leftrightarrow x^2+4x+4=4\left(2x^2-x+1\right)\)
\(\Leftrightarrow7x^2-8x=0\Leftrightarrow7x\left(x-\frac{8}{7}\right)=0\Leftrightarrow\orbr{\begin{cases}x=0\left(TM\right)\\x=\frac{8}{7}\left(TM\right)\end{cases}}\)
Note: Em ko chắc nha!
b)ĐK: x>-3
PT\(\Leftrightarrow2-\sqrt{\frac{1}{x+3}}+2-\sqrt{\frac{5}{x+4}}=0\)
\(\Leftrightarrow\frac{4-\frac{1}{x+3}}{2+\sqrt{\frac{1}{x+3}}}+\frac{4-\frac{5}{x+4}}{2+\sqrt{\frac{5}{x+4}}}=0\)
\(\Leftrightarrow\frac{4\left(x+\frac{11}{4}\right)}{\left(x+3\right)\left(2+\sqrt{\frac{1}{x+3}}\right)}+\frac{4\left(x+\frac{11}{4}\right)}{\left(x+4\right)\left(2+\sqrt{\frac{5}{x+4}}\right)}=0\)
\(\Leftrightarrow\left(x+\frac{11}{4}\right)\left[\frac{4}{\left(x+3\right)\left(2+\sqrt{\frac{1}{x+3}}\right)}+\frac{4}{\left(x+4\right)\left(2+\sqrt{\frac{5}{x+4}}\right)}\right]=0\)
Cái ngoặc to lớn hơn 0 (hiển nhiên)
Bí.
Câu 2 nhé: (CÁCH NÀY TUI NGHĨ ỔN ĐỊNH HƠN)
pt <=> \(\frac{1}{x+3}+\frac{5}{x+4}+2\sqrt{\frac{5}{\left(x+3\right)\left(x+4\right)}}=16\)
<=> \(\frac{1}{x+3}+\frac{5}{x+4}-16=-2\sqrt{\frac{5}{\left(x+3\right)\left(x+4\right)}}\)
<=> \(\frac{x+4+5\left(x+3\right)-16\left(x+3\right)\left(x+4\right)}{\left(x+3\right)\left(x+4\right)}=-2\sqrt{\frac{5}{\left(x+3\right)\left(x+4\right)}}\)
<=> \(\frac{\left(x+4+5\left(x+3\right)-16\left(x+3\right)\left(x+4\right)\right)^2}{\left(x+3\right)^2\left(x+4\right)^2}=\frac{20}{\left(x+3\right)\left(x+\text{4}\right)}\)
<=> \(\left(16\left(x+3\right)\left(x+4\right)-\left(x+4\right)-5\left(x+3\right)\right)^2=20\left(x+3\right)\left(x+4\right)\)
Ta đặt: \(x+4=a;x+3=b\) => \(a-b=1\) => \(a=b+1\)
=> TA CÓ PT MS: \(\left(16ab-a-5b\right)^2=20ab\)
<=> \(\left(16b\left(b+1\right)-b-1-5b\right)^2=20b\left(b+1\right)\)
<=> \(\left(16b^2+10b-1\right)^2=20b^2+20b\)
<=> \(256b^4+100b^2+1+320b^3-32b^2-20b=20b^2+20b\)
<=> \(256b^4+320b^3+48b^2-40b+1=0\)
Bạn ấn nghiệm ra thì có 1 no \(=\frac{1}{4}\); 1 nghiệm vô tỉ và do \(b=x+3\left(cmt\right)\)
=> TA DỄ DÀNG TÌM RA X.