Vì cả hai số hạng đều là các số lập phương, ta tách nhân tử bằng cách sử dụng công thức tổng các lập phương:\(\left(x+2\right)^3+\left(x+1\right)^3=0\)\(\Leftrightarrow\)(x+2+x+1)\([\left(x+2\right)^2-\left(x+2\right)\left(x+1\right)+\left(x+1\right)^2]=0\)\(\Leftrightarrow\left(2x+3\right)\left(x^2+3x+3\right)=0\)
2x+3=0=>\(x=\dfrac{-3}{2}\)nếu là kiến thức trung học thì pt này sẽ có 1 đáp án vì \(x^2+3x+3>0\)trên thực tế , pt này sẽ có 3 giá trị x vì : 3\(x^2+3x+3\) vẫn có thể =0 ta có :Sử dụng công thức bậc hai:\(-\dfrac{b\pm\sqrt{b^2-4\left(ac\right)}}{2a}\)Thay thế các giá trị a=1, b=3, và c=3 vào công thức bậc hai\(\dfrac{-3\pm\sqrt{3^2-4\left(1.3\right)}}{2.1}\)\(\Leftrightarrow x=\dfrac{-3\pm i\sqrt{3}}{2}\)câu trả lời cuối cùng kết hợp tất cả đáp án là :\(\left\{{}\begin{matrix}x=-\dfrac{3}{2}\\x=\dfrac{-3+i\sqrt{3}}{2}\\x=\dfrac{-3-i\sqrt{3}}{2}\end{matrix}\right.\)