ĐK: x2 - 1 \(\ge\) 0
Bình phương 2 vế ta được: \(\left(x^2+3\sqrt{x^2-1}\right)^2=\left(\sqrt{x^4-x^2+1}\right)^2\)
<=> \(x^4+6x^2\sqrt{x^2-1}+9\left(x^2-1\right)=x^4-x^2+1\)
<=> \(6x^2\sqrt{x^2-1}+10x^2-10=0\)
<=> \(3x^2\sqrt{x^2-1}+5\left(x^2-1\right)=0\)
<=> \(\sqrt{x^2-1}.\left(3x^2+5\sqrt{x^2-1}\right)=0\)
<=> \(\sqrt{x^2-1}=0\) hoặc \(3x^2+5\sqrt{x^2-1}=0\)
+) \(\sqrt{x^2-1}=0\) => x2 - 1 = 0 <=> x = 1 hoặc x = -1
+) \(3x^2+5\sqrt{x^2-1}=0\) <=> \(x^2=\sqrt{x^2-1}=0\) => Vô nghiệm
Vậy...
"anh vô anh ơis"là sao bn Vương Thúy Kiều!!!!!!!!!!