Hết cách òi chỉ còn cách này thôi :
ĐK -1/3 <=x <= 1
Dễ thấy x = 1 là nghiệm đúng của pt
với 1 < x < 5 => \(\sqrt{5-x}2\)
=> VT = \(\sqrt{5-x}-\sqrt{3x+1}8.1+16.1-24=0\)
=> với -1/3 < x < 1 => \(\sqrt{5-x}>2;\sqrt{3x+1}0\)
VP \(
Hết cách òi chỉ còn cách này thôi :
ĐK -1/3 <=x <= 1
Dễ thấy x = 1 là nghiệm đúng của pt
với 1 < x < 5 => \(\sqrt{5-x}2\)
=> VT = \(\sqrt{5-x}-\sqrt{3x+1}8.1+16.1-24=0\)
=> với -1/3 < x < 1 => \(\sqrt{5-x}>2;\sqrt{3x+1}0\)
VP \(
\(\text{Giải PT: }\sqrt{5-x}-\sqrt{3x+1}=8x^2+16x-24\)
Giải pt
\(\sqrt{x^2-8x+16}-x=2\)
\(3\sqrt{x}-2\sqrt{9x}+\sqrt{16x}=5\)
giải các phương trình sau:
\(1,\sqrt{18x}-6\sqrt{\dfrac{2x}{9}}=3-\sqrt{\dfrac{x}{2}}\)
\(2,\sqrt{3x}-2\sqrt{12x}+\dfrac{1}{3}\sqrt{27x}=-4\)
3, \(3\sqrt{2x}+5\sqrt{8x}-20-\sqrt{18}=0\)
\(4,\sqrt{16x+16}-\sqrt{9x+9}=1\)
\(5,\sqrt{4\left(1-3x\right)}+\sqrt{9\left(1-3x\right)}=10\)
\(6,\dfrac{2}{3}\sqrt{x-3}+\dfrac{1}{6}\sqrt{x-3}-\sqrt{x-3}=\dfrac{-2}{3}\)
Giải pt nghiệm nguyên: \(3x-16y-24=\sqrt{9x^2+16x+32}\)
giải PT:
\(\sqrt[]{3x+1}-\sqrt[]{6-x}+3x^2-14x-8x\)
giải pt nghiệm nguyên sau: \(\sqrt{9x^2+16x+96}\)=3x\(^2\)-16x-24
giải pt
\(\sqrt{x-7}+\sqrt{9-x}=x^2-16x+66\)
b) \(\sqrt{1-x}+\sqrt{x^2-3x+2}+\left(x-2\right)\sqrt{\frac{x-1}{x-2}}=3\)
Giải PT: \(\sqrt{x+2}+\sqrt{6-x}=x^2-8x+24\)
giải pt
\(3x^2-8x-7=4x\sqrt{x+2}\)