- Với \(x< 0\Rightarrow2^x\notin Z\Rightarrow2^x+7\notin Z\) pt vô nghiệm
- Với \(x=0\) ko thỏa mãn
- Với \(x=1\Rightarrow y=\pm3\)
- Với \(x>1\Rightarrow2^x+7\) luôn lẻ \(\Rightarrow y^2\) lẻ \(\Rightarrow y\) lẻ \(\Rightarrow y=2k+1\)
\(\Rightarrow2^x+7=\left(2k+1\right)^2\)
\(\Rightarrow2^x+6=4k\left(k+1\right)\)
\(\Rightarrow4k\left(k+1\right)-2^x=6\)
Do \(x>1\Rightarrow2^x⋮4\Rightarrow4k\left(k+1\right)-2^x⋮4\) trong khi \(6⋮̸4\)
\(\Rightarrow\) Ko tồn tại x;k thỏa mãn
Vậy \(\left(x;y\right)=\left(1;-3\right);\left(1;3\right)\)