x(x - 1)(x + 4)(x + 5) = 84
<=> x(x + 4)(x - 1)(x + 5) = 84
<=> (x² + 4x)(x² + 4x - 5) - 84 = 0
Đặt t = x² + 4x ta có
t(t - 5) - 84 = 0
<=> t² - 5t - 84 = 0
<=> t² + 7t - 12t - 84 = 0
<=> t(t + 7) - 12(t + 7) = 0
<=> (t - 12)(t + 7) = 0
<=> t = 12 hoặc t = -7
Với t = 12 ta có
x² + 4x = 12
<=> x² + 4x - 12 = 0
<=>x² - 2x + 6x - 12 = 0
<=> x(x - 2) + 6(x - 2) = 0
<=> (x + 6)(x - 2) = 0
<=> x = -6 hoặc x = 2
Với x = - 7 ta có
x² + 4x = -7
<=> x² + 4x + 7 = 0
<=> x² + 4x + 4 + 3 =0
<=> (x + 2)² + 3 = 0
Lại có (x + 2)² + 3 > 0 với mọi x
=> pt vô nghiệm
Kết luận nghiêm x = - 6 ; x = 2
\(Tacó\)
\(x\left(x-1\right)\left(x+4\right)\left(x+5\right)=\left[\left(x-1\right)\left(x+5\right)\right]\left[x\left(x+4\right)\right]\)
\(=\left(x^2+4x-5\right)\left(x^2+4x\right)\)
\(Đặt:x^2+4x=t\)pt trở thành:
\(\left(t-5\right)t=84=7.12\Leftrightarrow t=12\)
\(\Leftrightarrow x^2+4x=12\Leftrightarrow x\left(x+4\right)=12=2.6\Leftrightarrow x=2\)
\(Vậy:x=2\)
\(x\left(x-1\right)\left(x+4\right)\left(x+5\right)=84\)
\(\Leftrightarrow x^4+8x^3+11x^2-20x=84\)
\(\Leftrightarrow x^4+8x^3+11x^2-20x=84-84\)
\(\Leftrightarrow x^4+8x^3+11x^2-20x=0\)
\(\Leftrightarrow\left(x-2\right)\left(x-6\right)\left(x^2+4x+7\right)=0\)
\(\Rightarrow\hept{\begin{cases}x=4\\x=-6\end{cases}}\)
Xin lỗi, chỉnh lại \(\hept{\begin{cases}x=2\\x=-6\end{cases}}\) hộ mình nha :v