Giải phương trình:
\(a.\sqrt{2x-1}+x^2-3x+1=0\)
\(b.x^2-3x-2=\left(x-1\right)\left(\sqrt{2x+1}\right)\)
\(c.x^2+4x+3=\left(x+1\right)\left(\sqrt{8x+5}+\sqrt{6x+2}\right)\)
Bài 1: Cho hệ phương trình: \(\hept{\begin{cases}x+y=2a-1\\x^2+y^2=a^2+2a-3\end{cases}}\)
Giả sử (x; y) là nghiệm của hệ phương trình. Xác định a để xy đạt GTNN. Tìm GTNN đó.
Bài 2: Giải hệ phương trình: \(\hept{\begin{cases}\left(c+a\right)y+\left(a+b\right)z-\left(b+c\right)x=2a^3\\\left(a+b\right)z+\left(b+c\right)x-\left(c+a\right)y=2b^3\\\left(b+c\right)x+\left(c+a\right)y-\left(a+b\right)z=2c^3\end{cases}}\)
Giải chi tiết hộ mk
a)Cho hai phương trình \(x^2+2mx+mn-1=0\) và \(x^2-2nx+m+n=0\) (m,n là tham số)
Chứng minh rằng với mọi giá trị của m và n ít nhất một trong hai phương trình trên có nghiệm
b)Gọi a và b là 2 nghiệm của phương trình \(x^2+px+1=0\)
c và d là 2 nghiệm của phương trình \(x^2+qx+1=0\)
chứng minh hệ thức \(\left(a-c\right)\left(a-d\right)\left(b-c\right)\left(b-d\right)=\left(p-q\right)^2\)
MỌI NGƯỜI GIẢI HỘ MÌNH MẤY BÀI NÀY NHÉ:
Bài 1:
Cho a, b, c ∈ Z+. CMR nếu \(\sqrt{a}+\sqrt{b}+\sqrt{c}\)∈ Q thì a, b, c đồng thời là số chính phương.
Bài 2:
cho n ∈ Z+ không là số chính phương, \(\sqrt{n}\)là nghiệm của phương trình \(X^3+a.X^2+b.X+c=0\)(a,b,c ∈ Q)
tìm các nghiệm còn lại của phương trình.
Bài 3;
Tồn tại hay không số hữu tỉ a, b, c, d sao cho (\(\left(a+b.\sqrt{2}\right)^{1994}+\left(c+d.\sqrt{2}\right)^{1994}=5+4\sqrt{2}\)
Bài 4:
giải phương trình nghiệm nguyên \(\sqrt{x}+\sqrt{y}=\sqrt{1980}\)
Bài 5:
tìm x để \(\sqrt[3]{3+\sqrt{x}}+\sqrt[3]{3-\sqrt{x}}\)là số nguyên
Bài 6:
hãy biểu thị \(\sqrt[3]{2+\sqrt{5}}\)dưới dạng \(a+b.\sqrt{5}\)với a, b∈ Q
Đơn giản biểu thức bằng vận dụng tính chất nghiệm đa thức:
N = \(\frac{a-b}{a+b}+\frac{b-c}{b+c}+\frac{c-a}{c+a}+\frac{\left(a-b\right)\left(b-c\right)\left(c-a\right)}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\)
Gọi x1 là nghiệm âm của phương trình: x2 + x -1 =0.
Không giải phương trình tính giá trị của:
\(D=\sqrt{x_1^8+10x_1+13}+x_1\)
Trong các phương trình sau,phương trình nào có ít nhất một nghiệm là số nguyên?
A.\(\left(x-\sqrt{5}\right)^2=5\) B.9x2-1=0 C.4x2-4x+1=0 D.x2+x+2=0
Giả sử a,b là nghiệm của phương trình \(x^2+px+1=0\) và c,d là nghiệm của phương trình \(x^2+qx+1=0\). Hãy chứng minh hệ thức
\(\left(a-c\right)\left(b-c\right)\left(a+d\right)\left(b+d\right)=q^2-p^2\)
Gọi a là nghiệm dương của phương trình: \(\sqrt{2}x^2+x-1=0\) . Không giải phương trình, hãy tính giá trị biểu thức: \(C=\dfrac{2a-3}{\sqrt{2\left(2a^4-2a+3\right)}+2a^2}\)
Tìm các nghiệm của phương trình (ax2+bx+c)(cx2+bx+a)=0 biết a,b,c là số hữu tỉ a,c khác 0 và \(x=\left(\sqrt{2}+1\right)^2\)là nghiệm của phương trình này