Lời giải:
a.
$\sqrt{x^2-8x+16}=x+2$
\(\Rightarrow \left\{\begin{matrix} x+2\geq 0\\ x^2-8x+16=(x+2)^2\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x\geq -2\\ x^2-8x+16=x^2+4x+4\end{matrix}\right.\)
\(\Leftrightarrow \left\{\begin{matrix} x\geq -2\\ 12x=12\end{matrix}\right.\Leftrightarrow x=1\)
b.
PT \(\left\{\begin{matrix} 3x-6\geq 0\\ x^2+6x+9=(3x-6)^2\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x\geq 2\\ x^2+6x+9=9x^2-36x+36\end{matrix}\right.\)
\(\Leftrightarrow \left\{\begin{matrix} x\geq 2\\ 8x^2-42x+27=0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x\geq 2\\ (2x-9)(4x-3)=0\end{matrix}\right.\Rightarrow x=\frac{9}{2}\)
c.
PT $\Leftrightarrow \sqrt{x^2-4x+4}=2x-5$
\(\Rightarrow \left\{\begin{matrix}
2x-5\geq 0\\
x^2-4x+4=(2x-5)^2\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix}
x\geq \frac{5}{2}\\
x^2-4x+4=4x^2-20x+25\end{matrix}\right.\)
\(\Leftrightarrow \left\{\begin{matrix} x\geq \frac{5}{2}\\ 3x^2-16x+21=0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x\geq \frac{5}{2}\\ (x-3)(3x-7)=0\end{matrix}\right.\Rightarrow x=3\)