a/ \(\left(x^5+x^4+x^3\right)+\left(x^2+x+1\right)=0\)
\(\Leftrightarrow x^3\left(x^2+x+1\right)+\left(x^2+x+1\right)=0\)
\(\Leftrightarrow\left(x^2+x+1\right)\left(x^3+1\right)=0\)
Do \(x^2+x+1=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}>0\forall x\)
Nên \(x^3+1=0\Leftrightarrow x=-1\)
Mặc dù có những đứa tk sai dạo nhưng t vx làm.
Bài này hướng dẫn thôi,tự trình bày lại phần phân tích đa thức thành nhân tử.
b) \(x^5-x^4+3x^3+3x^2-x+1=0\)
\(\Leftrightarrow\left(x+1\right)\left(x^4-2x^3+5x^2-2x+1\right)=0\)
Suy ra x + 1 = 0 tức là x = -1 hoặc:\(x^4-2x^3+5x^2-2x+1=0\)
\(\Leftrightarrow\left(x^4-2x^3+x^2\right)+\left(4x^2-2x+1\right)=0\)
Mà \(VT=x^2\left(x-1\right)^2+4\left(x-\frac{1}{4}\right)^2+\frac{3}{4}\ge\frac{3}{4}>0\forall x\) (vô nghiệm)
Vậy một nghiệm x = -1