Đặt \(x^2-6x=t\)
Ta có: \(\frac{21}{t}-t+4=0\Leftrightarrow t^2-4t-21=0\\ \Rightarrow\left(t-7\right)\left(t+3\right)=0\\ \Leftrightarrow\orbr{\begin{cases}t=7\\t=-3\end{cases}}\)
\(t=7\Rightarrow x^2-6x-7=0\Rightarrow\orbr{\begin{cases}x=7\\x=-1\end{cases}}\)
\(t=3\Rightarrow x^2-6x-3=0\Rightarrow\orbr{\begin{cases}x=3-\sqrt{12}\\x=3+\sqrt{12}\end{cases}}\)