a/ \(x^4+x^2+6x-8=0\Leftrightarrow\left(x^4-16\right)+\left(x^2-x\right)+\left(2x-2\right)+\left(5x+10\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x+2\right)\left(x^2+4\right)+x\left(x-1\right)+2\left(x-1\right)+5\left(x+2\right)=0\)
\(\Leftrightarrow\left(x+2\right)\left[\left(x-2\right)\left(x^2+4\right)+x-1+5\right]=0\)
\(\Leftrightarrow\left(x+2\right)\left[x^3-2x^2+5x-4\right]=0\)
\(\Leftrightarrow\left(x+2\right)\left[\left(x^3-x^2\right)+\left(4x-4\right)+\left(x-x^2\right)\right]=0\)
\(\Leftrightarrow\left(x+2\right)\left[x^2\left(x-1\right)+4\left(x-1\right)-x\left(x-1\right)\right]=0\)
\(\Leftrightarrow\left(x+2\right)\left(x-1\right)\left(x^2+4-x\right)=0\)
Vậy x = -2; x =1
b/ đặt x2 + x + 1 = t có:
t (t + 1) = 12
<=> t2 + t - 12 = 0
<=> (t2 - 16) + (t + 4) = 0
<=> (t - 4) (t + 4) + (t + 4) = 0
<=> (t + 4) (t - 4 + 1) = 0
<=> (t + 4) (t - 3) = 0
=> t = -4; t = 3
thay t = x2 + x + 1 đc:
x2 + x + 1 = -4 ; x2 + x + 1 = 3
<=> x2 + x + 5 = 0 <=> x2 + x - 2 = 0
<=> x (loại) <=> (x2 - 1) + (x - 1) = 0
<=> (x - 1) (x + 2) = 0
<=> x = 1; x = -2
c/ đặt x2 + x - 2 = a có:
a (a - 1) = 12
<=> a2 - a - 12 = 0
<=> (a2 - 16) - (a - 4) = 0
làm tương tự câu b
..........