( x + 1 ) 2 ( x 2 + 4 ) = x 2 − x − 2 (1)
Điều kiện: x2 + 4 ≥ 0 (luôn đùng ∀ x)
( 1 ) ⇔ ( x + 1 ) 2 ( x 2 + 4 ) = ( x − 2 ) ( x + 1 ) ⇔ ( x + 1 ) 2 ( x 2 + 4 ) − ( x − 2 ) = 0 ⇔ x = − 1 2 ( x 2 + 4 ) = x − 2 ( 2 )
Có ( 2 ) ⇔ x ≥ 2 2 ( x 2 + 4 ) = x - 2 2 ⇔ x ≥ 2 x 2 + 4 x + 4 = 0 ⇔ x ≥ 2 x = − 2 (loại)
Vậy tập nghiệm của phương trình đã cho là {–1}