Giải bằng bất đẳng thức Cô si: (ĐK: \(x^2-x+1\ge0;-2x^2+x+2\ge0;x^2-4x+7\)
Ta có: \(x^2-x+1+1\ge2\sqrt{x^2-x+1}\Leftrightarrow\sqrt{x^2-x+1}\le\dfrac{x^2-x+2}{2}\left(1\right)\\ T,T:\sqrt{-2x^2+x+2}\le\dfrac{-2x^2+x+3}{2}\left(2\right)\\ \left(1\right);\left(2\right)\Rightarrow\sqrt{x^2-x+1}+\sqrt{-2x^2+x+2}\le\dfrac{x^2-x+2-2x^2+x+3}{2}=\dfrac{-x^2+5}{2}\\ \Rightarrow\sqrt{x^2-x+1}+\sqrt{-2x^2+x+2}-\dfrac{x^2-4x+7}{2}\le\dfrac{-x^2+5-x^2+4x-7}{2}\\
=\dfrac{-2x^2+4x-2}{2}\\
=-x^2+2x-1
\\
\Rightarrow-\left(x-1\right)^2\ge0\)
Điều này chỉ thỏa 1 điều kiên khi x-1=0 ⇔x=1(nhận
Vậy x=1 là nghiệm cuả phương trình