Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Nguyễn Đức Duy

giải phương trình: \(\sqrt{\text{x}^2-\text{x}+1}+\sqrt{-2\text{x}^2+\text{x}+2}=\dfrac{\text{ }\text{x}^2-4\text{x}+7}{2}\)

Nguyễn Trịnh Phú Vinh
4 tháng 10 2023 lúc 22:39

Giải bằng bất đẳng thức Cô si: (ĐK: \(x^2-x+1\ge0;-2x^2+x+2\ge0;x^2-4x+7\)
Ta có: \(x^2-x+1+1\ge2\sqrt{x^2-x+1}\Leftrightarrow\sqrt{x^2-x+1}\le\dfrac{x^2-x+2}{2}\left(1\right)\\ T,T:\sqrt{-2x^2+x+2}\le\dfrac{-2x^2+x+3}{2}\left(2\right)\\ \left(1\right);\left(2\right)\Rightarrow\sqrt{x^2-x+1}+\sqrt{-2x^2+x+2}\le\dfrac{x^2-x+2-2x^2+x+3}{2}=\dfrac{-x^2+5}{2}\\ \Rightarrow\sqrt{x^2-x+1}+\sqrt{-2x^2+x+2}-\dfrac{x^2-4x+7}{2}\le\dfrac{-x^2+5-x^2+4x-7}{2}\\ =\dfrac{-2x^2+4x-2}{2}\\ =-x^2+2x-1 \\ \Rightarrow-\left(x-1\right)^2\ge0\)
Điều này chỉ thỏa 1 điều kiên khi x-1=0 ⇔x=1(nhận
Vậy x=1 là nghiệm cuả phương trình


Các câu hỏi tương tự
Nguyễn Đức Duy
Xem chi tiết
Tô Hồng Nhân
Xem chi tiết
Nhạt
Xem chi tiết
anh kim
Xem chi tiết
Dung Vu
Xem chi tiết
Tùng Hoàng
Xem chi tiết
Nguyễn Đức Duy
Xem chi tiết
Lê Thị Ngọc Huyền
Xem chi tiết
Lê Thị Ngọc Huyền
Xem chi tiết