\(\left|x-2015\right|^{2016}+\left|x-2016\right|^{2017}=1\)
Có: \(\left|x-2015\right|^{2016}\ge0;\left|x-2016\right|^{2017}\ge0\)
TH1: \(\hept{\begin{cases}\left|x-2015\right|^{2016}=1\\\left|x-2016\right|^{2017}=0\end{cases}}\Rightarrow\hept{\begin{cases}\left|x-2015\right|=1\\\left|x-2016\right|=0\end{cases}}\)
THa: \(x-2015=-1\Rightarrow x=2014\)
Thay vào: \(2014-2016\ne0\) ( loại)
THb: \(x-2015=1\Rightarrow x=2016\)
Thay vào: \(2016-2016=0\)( chọn )
TH2: \(\hept{\begin{cases}\left|x-2015\right|^{2016}=0\\\left|x-2016\right|^{2017}=1\end{cases}}\Rightarrow\hept{\begin{cases}\left|x-2015\right|=0\\\left|x-2016\right|=1\end{cases}}\)
THc: \(x-2016=-1\Rightarrow x=2015\)
Thay vào: \(2015-2015=0\)( chọn )
THd: \(x-2016=1\Rightarrow x=2017\)
Thay vào: \(2017-2015\ne0\)
Vậy: x = 2016 hoặc x = 2015
\(\left|x-2015\right|^{2016}\ge0\)
\(\left|x-2016\right|^{2017}\ge0\)
\(\Rightarrow\orbr{\begin{cases}x=2015\\x=2016\end{cases}}\)
CÂU TRẢ LỜI CỦA MINH ANH ĐÃ SAI NGAY TỪ ĐẦU VÌ ĐÃ CHO RẰNG X,Y THUỘC Z
|-1|2017 có bằng 1 không?
Nếu có thì => cả 2 trường hợp đều khả quan