\(ĐK:-1\le x< 0;x\ge1\\ PT\Leftrightarrow x+2\sqrt{x-\dfrac{1}{x}}=3+\dfrac{1}{x}\\ \Leftrightarrow x-\dfrac{1}{x}+2\sqrt{x-\dfrac{1}{x}}-3=0\)
Đặt \(\sqrt{x-\dfrac{1}{x}}=a\ge0\)
\(PT\Leftrightarrow a^2+2a-3=0\\ \Leftrightarrow\left(a-1\right)\left(a+3\right)=0\\ \Leftrightarrow a=1\left(a\ge0\right)\\ \Leftrightarrow x-\dfrac{1}{x}=1\\ \Leftrightarrow x^2-x-1=0\\ \Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1-\sqrt{5}}{2}\left(tm\right)\\x=\dfrac{1+\sqrt{5}}{2}\left(tm\right)\end{matrix}\right.\)