Điều kiện: (k ∈ Z).
Vậy phương trình có tập nghiệm
Điều kiện: (k ∈ Z).
Vậy phương trình có tập nghiệm
Giải phương trình sau: sin(x + 2) = 1/3
Giải phương trình sau: cos(x - 1) = 2/3
Giải các phương trình sau:
1)
1 3 sin 2 cos 2 x x
Giải phương trình sau: sin2 x + sin2x - 2 cos2 x = 1/2
1/ Giải phương trình sau:
\(tan^2\left(x+\dfrac{\pi}{3}\right)+\left(\sqrt{3}-1\right)tan\left(x+\dfrac{\pi}{3}\right)-\sqrt{3}=0\)
2/ Tìm hệ số của số hạng chứa \(x^{26}\) trong khai triển \(\left(\dfrac{1}{x^4}+x^7\right)^n\) . Biết \(C^2_{n+2}-4C^n_{n+1}=2\left(n+1\right)\) (n ∈ N* ; x > 0)
Giải phương trình sau: cos(x + 30o) = √3/2
a) Giải phương trình trên tập số thực:
\(x^3-4x^2-5x+6=\sqrt[3]{7x^2+9x-4}\)
b) Giải hệ phương trình sau:
\(\left\{{}\begin{matrix}x^2+2x\sqrt{xy}=y^2\sqrt{y}\\\left(4x^3+y^3+3x^2\sqrt{x}\right)\left(15\sqrt{x}+y\right)=3\sqrt{x}\left(y\sqrt{y}+x\sqrt{y}+4x\sqrt{x}\right)^2\end{matrix}\right.\) ; với \(x,y\inℝ\)
tính đạo hàm
a) \(y=\dfrac{\left(x-2\right)^2}{\left(2x-3\right)\left(x-1\right)}\)
b) \(y=x+3+\dfrac{4}{x+3}\) giải phương trình y'=0
c) \(y=\dfrac{\left(5x-1\right)\left(x+1\right)}{x+2}\) tính y'(-1)
d) \(y=x-2+\dfrac{9}{x-2}\) giải phương trình y'=0
giải phương trình
a) \(2^x=2^{3x-1}\)
b) \(7^{x-5}=49\)
c) \(3^{5x-3}=1\)
d) \(\left(\dfrac{1}{7}\right)^{5x}=7^{x+6}\)
giải các phương trình sau
a) \(2^{x^2-1}=256\)
b) \(3^{x^2+3x}=81\)
c) \(2^{x^2-5x}=64\)
d) \(\left(\dfrac{1}{3}\right)^x=243\)
e) \(\left(\dfrac{1}{3}\right)^{x+5}=3^{2x+1}\)