Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Yên Nông Thị

Giải phương trình:  \(\left(4x+2\right)\sqrt{x+8}=3x^2+7x+8\)

Kiệt Nguyễn
15 tháng 4 2020 lúc 8:45

\(ĐK:x\ge-8\)

\(\left(4x+2\right)\sqrt{x+8}=3x^2+7x+8\)

\(\Leftrightarrow x+8-3x\sqrt{x+8}-\left(x+2\right)\sqrt{x+8}+3x\left(x+2\right)=0\)

\(\Leftrightarrow\sqrt{x+8}\left(\sqrt{x+8}-3x\right)-\left(x+2\right)\left(\sqrt{x+8}-3x\right)=0\)

\(\Leftrightarrow\left(\sqrt{x+8}-x-2\right)\left(\sqrt{x+8}-3x\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}\sqrt{x+8}=x+2\left(1\right)\\\sqrt{x+8}=3x\left(2\right)\end{cases}}\)

\(\left(1\right)\Leftrightarrow x+8=x^2+4x+4\Leftrightarrow x^2+3x-4=0\Leftrightarrow\orbr{\begin{cases}x=1\left(tm\right)\\x=-4\left(L\right)\end{cases}}\)

\(\left(2\right)\Leftrightarrow9x^2-x-8=0\Leftrightarrow\orbr{\begin{cases}x=1\left(tm\right)\\x=\frac{-8}{9}\left(L\right)\end{cases}}\)

Vậy nghiệm duy nhất của phương trình là 1

Khách vãng lai đã xóa
Thanh Tùng DZ
15 tháng 4 2020 lúc 8:50

ĐKXĐ : x \(\ge\)-8

PT đã cho tương đương với :

\(2\left(2x+1\right)\sqrt{x+8}=4x^2+4x+1+x+8-\left(x^2-2x+1\right)\)

\(\Leftrightarrow\left(2x+1\right)^2-2\left(2x+1\right)\sqrt{x+8}+x+8-\left(x-1\right)^2=0\)

\(\Leftrightarrow\left(2x+1-\sqrt{x+8}\right)^2-\left(x-1\right)^2=0\)

\(\Leftrightarrow\left(x+2-\sqrt{x+8}\right)\left(3x-\sqrt{x+8}\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x+2-\sqrt{x+8}=0\\3x-\sqrt{x+8}=0\end{cases}}\)

Từ đó giải ra x = 1 thỏa mãn đề bài

Khách vãng lai đã xóa
Nguyễn Phương Anh
15 tháng 4 2020 lúc 8:45

giúp mình giải câu đấy nữa

Khách vãng lai đã xóa

Các câu hỏi tương tự
vũ tiền châu
Xem chi tiết
Nguyễn Thanh
Xem chi tiết
Ngọc Anh Nguyễn
Xem chi tiết
Vũ Thảo Vy
Xem chi tiết
Sofia Nàng
Xem chi tiết
Nguyễn Nhật Hoàng
Xem chi tiết
Anime
Xem chi tiết
Nguyễn Bá Hùng
Xem chi tiết
Minh Anh Vũ
Xem chi tiết