\(ĐK:x\ne\pm1\)
\(\dfrac{5x+3}{x-1}+\dfrac{3x}{x+1}=\dfrac{9x-4}{\left(x-1\right)\left(x+1\right)}\)
\(\Leftrightarrow\dfrac{\left(5x+3\right)\left(x+1\right)+3x\left(x-1\right)}{\left(x-1\right)\left(x+1\right)}=\dfrac{9x-4}{\left(x-1\right)\left(x+1\right)}\)
\(\Leftrightarrow\left(5x+3\right)\left(x+1\right)+3x\left(x-1\right)=9x-4\)
\(\Leftrightarrow5x^2+5x+3x+3+3x^2-3x-9x+4=0\)
\(\Leftrightarrow8x^2-4x+7=0\)
Vậy pt vô nghiệm
\(\Leftrightarrow\left(5x+3\right)\left(x+1\right)+3x\left(x-1\right)=9x-4\)
\(\Leftrightarrow5x^2+5x+3x+3+3x^2-3x-9x+4=0\)
\(\Leftrightarrow8x^2-4x+7=0\)
\(\text{Δ}=\left(-4\right)^2-4\cdot8\cdot7=-208< 0\)
Do đó: Phương trình vô nghiệm