Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
LANG HẢI YẾN

-giải phương trình 

4(2x+7)-9(x+3)^2=0

- phân tích đa thức thành nhân tử bằng cách đặt ẩn phụ 

(x^2+x+1)*(x^2+x+2)-12

(mọi người giải giúp mình vs ạ)

Trần Thanh Phương
7 tháng 2 2019 lúc 8:49

Bài 1 :

Mình nghĩ phải sửa đề ntn :

\(4\left(2x+7\right)^2-9\left(x+3\right)^2=0\)

\(\Leftrightarrow\left[2\left(2x+7\right)\right]^2-\left[3\left(x+3\right)\right]^2=0\)

\(\Leftrightarrow\left[2\left(2x+7\right)-3\left(x+3\right)\right]\left[2\left(2x+7\right)+3\left(x+3\right)\right]=0\)

\(\Leftrightarrow\left(4x+14-3x-9\right)\left(4x+14+3x+9\right)=0\)

\(\Leftrightarrow\left(x+5\right)\left(7x+23\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x+5=0\\7x+23=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-5\\x=\frac{-23}{7}\end{cases}}}\)

Vậy....

b) \(A=\left(x^2+x+1\right)\left(x^2+x+2\right)-12\)

Đặt \(q=x^2+x+1\)ta có :

\(A=q\left(q+1\right)-12\)

\(A=q^2+q-12\)

\(A=q^2+4q-3q-12\)

\(A=q\left(q+4\right)-3\left(q+4\right)\)

\(A=\left(q+4\right)\left(q-3\right)\)

Thay \(q=x^2+x+1\)ta có :

\(A=\left(x^2+x+1+4\right)\left(x^2+x+1-3\right)\)

\(A=\left(x^2+x+5\right)\left(x^2+x-2\right)\)

\(A=\left(x^2+x+5\right)\left(x^2+2x-x-2\right)\)

\(A=\left(x^2+x+5\right)\left[x\left(x+2\right)-\left(x+2\right)\right]\)

\(A=\left(x^2+x+5\right)\left(x+2\right)\left(x-1\right)\)

LANG HẢI YẾN
7 tháng 2 2019 lúc 8:54

Cảm ơn ạ><

tth_new
7 tháng 2 2019 lúc 9:07

Cách 2 của câu 2:

Đặt \(x^2+x+2=t\)

Ta có: \(A=\left(x^2+x+1\right)\left(x^2+x+2\right)-12\)

\(=t\left(t-1\right)-12=t^2-t-12\)

\(=\left(t-4\right)\left(t+3\right)=\left(x^2+x-2\right)\left(x^2+x+5\right)\)

\(=\left(x-1\right)\left(x+2\right)\left(x^2+x+5\right)\)


Các câu hỏi tương tự
Hồng Ngân
Xem chi tiết
Nguyễn Thu Phương
Xem chi tiết
nguyenminhtrung01
Xem chi tiết
Nguyễn Lê Hoàng Anh
Xem chi tiết
thi hue nguyen
Xem chi tiết
Hoàng Tony
Xem chi tiết
Ly Le
Xem chi tiết
Thư Anh Nguyễn
Xem chi tiết
Pham Trong Bach
Xem chi tiết