\(x\ge3\)
\(\sqrt{3+\sqrt{x}}=\left(x-3\right)\Leftrightarrow3+\sqrt{x}=x^2-6x+9\Leftrightarrow x^2-6x-\sqrt{x}+6=0\)
\(\sqrt{x}\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)-6\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)=0\)
\(\left(\sqrt{x}-1\right)\left(x\sqrt{x}+x-5\sqrt{x}-6\right)=0\) x >/ 3
\(\left(x\sqrt{x}+x-5\sqrt{x}-6\right)=0\)
\(x\left(\sqrt{x}+2\right)-\sqrt{x}\left(\sqrt{x}+2\right)-3\left(\sqrt{x}-2\right)=0\)
\(\left(\sqrt{x}+2\right)\left(x-\sqrt{x}-3\right)=0\)
\(\left(x-\sqrt{x}-3\right)=0\)
giải tiếp nhé.