1.tìm m để pt có nghiệm duy nhất \(\dfrac{x-m}{x+1}=\dfrac{x-2}{x-1}\)
2. giải hệ phương trình \(\left\{{}\begin{matrix}x^2+8y^2=12\\x^3+2xy^2+12y=0\end{matrix}\right.\)
a,\(\hept{\begin{cases}x^4+2x^3y+x^2y^2=2x+9\\x^2+2xy+6x+6\end{cases}}\)
b,\(\hept{\begin{cases}x^3+2xy^3+12y=0\\8y^2+x^2+12\end{cases}}\)
GIẢI PT SAU:
\(\sqrt{3x-3}-\sqrt{5-x}=\sqrt{2x-4}\)
\(x^2-6x+9=4\sqrt{x^2-6x+6}\)
\(x^2-x+8-4\sqrt{x^2-x+4}=0\)
GIẢI PT SAU:
\(\sqrt{3x-3}-\sqrt{5-x}=\sqrt{2x-4}\)
\(x^2-6x+9=4\sqrt{x^2-6x+6}\)
Giải hệ phương trình:\(\left\{\begin{matrix} x^2+8y^2=12\\ x^2+2xy^2+12y=0\end{matrix}\right.\)
Cho hệ phương trình x + y + 1 + 1 = 4 x + y 2 + 3 . x + y 2 x - y = 3 2 .Giả sử (x;y) là cặp nghiệm của hệ phương trình. Khi đó, A = 9x2 – 12y + 1 bằng
A. 3
B. 9
C. 4
D. 7
\(2x^2+\2x=[x+y]y+\x+y\)
\x-2 -\3y=1-\2y+3
giải hệ pt ;\ là căn bậc hai
Giải hệ pt:
\(\hept{\begin{cases}\left(y^2+4y\right)\sqrt{x+2}=\left(2x+1\right)\left(y+1\right)\\\left(\frac{2x+1}{y}\right)^2+x=2y^2+10y+3\end{cases}}\)
Giải hệ phương trình :
\(\left\{{}\begin{matrix}\sqrt{3+2x^2y-x^4y^2}+x^4\left(1-2x^2\right)=y^2\\1+\sqrt{1+\left(x-y\right)^2}=x^3\left(x^3-x+2y^2\right)\end{matrix}\right.\)