a, giải phương trình : 4x²+√2x+3=8x+1
B, giải hệ phương trình :
{√x+y+1+(x+2y)=4(x+y) ²+√3*√x+y
X-4y-3=(2y)²-√2-x²
GIẢI HỆ PHƯƠNG TRÌNH SAU \(\hept{\begin{cases}x^3-2x=y\\y^3+2y=z\\x+y+z+1+\sqrt{x-1}=0\end{cases}}\).(CẢM ƠN CÁC BẠN)
Giải hệ phương trình :
\(\left\{{}\begin{matrix}\sqrt{3+2x^2y-x^4y^2}+x^4\left(1-2x^2\right)=y^2\\1+\sqrt{1+\left(x-y\right)^2}=x^3\left(x^3-x+2y^2\right)\end{matrix}\right.\)
Giải hệ phương trình:
\(\hept{\begin{cases}2y^3+y+2x\sqrt{1-x}=3\sqrt{1-x}\\\sqrt{2y^2+1}-y=2-x\end{cases}}\)
Giải hệ phương trình
\(\left\{{}\begin{matrix}x^2y+2y+x=4xy\\\dfrac{1}{x^2}+\dfrac{1}{xy}+\dfrac{x}{y}=3\end{matrix}\right.\)
Giải hệ phương trình:
a, \(\hept{\begin{cases}x^2+y^2+\frac{2xy}{x+y}=1\\\sqrt{x+y}=x^2-y\end{cases}}\)
b,\(\hept{\begin{cases}x^3-6x^2y+9xy^2-4y^3=0\\\sqrt{x-y}+\sqrt{x+y}=2\end{cases}}\)
Giải hệ phương trình \(\left\{{}\begin{matrix}6x^2-y-xy^2=0\\5x^2-x^2y^2-1=0\end{matrix}\right.\)
Cho hệ phương trình x 12 - y + y 12 - x 2 = 12 1 x 3 - 8 x - 1 = 2 y - 2 2 . Nếu x ; y là nghiệm của hệ phương trình thì x + y bằng bao nhiêu?
A. 3
B. 9
C. 0
D. 6
giải hệ phương trình:
xy(4xy+y+4)=y^2(2y+5)−1
2xy(x−2y)+x−14y=0