Giải các hệ phương trình sau:
d.\(\left\{{}\begin{matrix}3x-2y=-8\\y-2x=5\end{matrix}\right.\)
Giải các hệ phương trình sau:
a) \(\left\{{}\begin{matrix}2x+5y=5\\3x-5y=-30\end{matrix}\right.\) b) \(\left\{{}\begin{matrix}4x-3y=-5\\3x+2y=-8\end{matrix}\right.\)
c) \(\left\{{}\begin{matrix}3x+3y=9\\4x-2y=-2\end{matrix}\right.\) d) \(\left\{{}\begin{matrix}5x-4y=32\\6x+2y=18\end{matrix}\right.\)
e) \(\left\{{}\begin{matrix}2x-3y+5=0\\3x+5y-21=0\end{matrix}\right.\) f) \(\left\{{}\begin{matrix}x-y\sqrt{2}=0\\2x\sqrt{2}+y=5\end{matrix}\right.\)
g) \(\left\{{}\begin{matrix}5x+4y=-3\\3x+2y=11\end{matrix}\right.\) h) \(\left\{{}\begin{matrix}2x-4y=12\\5x+3y=17\end{matrix}\right.\)
giải hệ phương trình
1)\(\left\{{}\begin{matrix}3x+4y=11\\2x-y=-11\end{matrix}\right.\) 2)\(\left\{{}\begin{matrix}3x+2y=0\\2x+y=-1\end{matrix}\right.\) 3)\(\left\{{}\begin{matrix}3x+\dfrac{5}{2}y=9\\2x+\dfrac{1}{3}y=2\end{matrix}\right.\)
4)\(\left\{{}\begin{matrix}-x+3y=16\\2x+y=3\end{matrix}\right.\) 5)\(\left\{{}\begin{matrix}\dfrac{-3}{x-y}+\dfrac{5}{2x+y}=-2\\\dfrac{4}{x-y}-\dfrac{10}{2x+y}=2\end{matrix}\right.\) 6)\(\left\{{}\begin{matrix}\dfrac{1}{x}-\dfrac{1}{y}=1\\\dfrac{3}{x}+\dfrac{4}{y}=5\end{matrix}\right.\)
giải hệ phương trình
a
\(\left\{{}\begin{matrix}x+y=1\\x-y=-5\end{matrix}\right.\)
b.
\(\left\{{}\begin{matrix}2x+2y=5\\x-2y=1\end{matrix}\right.\)
c.
\(\left\{{}\begin{matrix}2x+3y=5\\3x-2y=1\end{matrix}\right.\)
Giải các hệ phương trình sau bằng phương pháp thế:
a)\(\left\{{}\begin{matrix}3x-2y=11\\4x-5y=3\end{matrix}\right.\)
b)\(\left\{{}\begin{matrix}\dfrac{x}{2}-\dfrac{y}{3}=1\\5x-8y=3\end{matrix}\right.\)
c)\(\left\{{}\begin{matrix}3x+5y=1\\2x-y=-8\end{matrix}\right.\)
d)\(\left\{{}\begin{matrix}\dfrac{x}{y}=\dfrac{2}{3}\\x+y-10=0\end{matrix}\right.\)
Giải hệ phương trình \(\left\{{}\begin{matrix}6\left(x+y\right)=8+2x-3y\\5\left(y-x\right)=5+3x+2y\end{matrix}\right.\)
\(\left\{{}\begin{matrix}\left(x-1\right)\left(y-2\right)=\left(x+1\right)\left(y-3\right)\\\left(x-5\right)\left(y+4\right)=\left(x-4\right)\left(y+1\right)\end{matrix}\right.\)
\(\left\{{}\begin{matrix}\left(x-2\right)\left(y+1\right)=xy
\\\left(x+8\right)\left(y-2\right)=xy\end{matrix}\right.\) GIÚP MÌNH VỚI Ạ MÌNH CẢM ƠN
Đoán nhận hệ số nghiệm của mỗi hệ phương trình sau và giải thích vì sao:
a) \(\left\{{}\begin{matrix}2x+y=3\\3x-y=1\end{matrix}\right.\)
b) \(\left\{{}\begin{matrix}3x+2y=0\\2x-3y=0\end{matrix}\right.\)
c) \(\left\{{}\begin{matrix}3x+0y=6\\2x+y=1\end{matrix}\right.\)
d) \(\left\{{}\begin{matrix}x-y=4\\0x-y=2\end{matrix}\right.\)
e) \(\left\{{}\begin{matrix}x+2y=3\\2x+4y=1\end{matrix}\right.\)
f) \(\left\{{}\begin{matrix}x+y=1\\\dfrac{x}{2}+\dfrac{y}{2}=\dfrac{1}{2}\end{matrix}\right.\)
Mẫu câu a : Ta có: \(\dfrac{a}{a'}\ne\dfrac{b}{b'}\Leftrightarrow\dfrac{2}{3}\ne\dfrac{1}{-1}\), do đó hệ phương trình đã cho có 1 nghiệm duy nhất
giúp mk vs mn ơi! mk đang cần gấp
giải hệ phương trình
a) \(\left\{{}\begin{matrix}x+2y=2\\-2x+y=1\end{matrix}\right.\)
b) \(\left\{{}\begin{matrix}3x-2y=4\\2x+y=5\end{matrix}\right.\)
c) \(\left\{{}\begin{matrix}2y-x=2\\2x-y=-1\end{matrix}\right.\)
giúp tui giải bài này với tui c.ơn trước
giải hệ phương trình
a)
b)
c) \(\left\{{}\begin{matrix}2x-y=13\\-5+y=-7\end{matrix}\right.\)
d) \(\left\{{}\begin{matrix}3x+y=8\\2x-3y=1\end{matrix}\right.\)
giúp tui giải bài trên với tui đag cần gấp tui c.ơn trước