Điều kiện xác định : \(x,y,z\ge0\)
Đặt \(a=\sqrt{x}-13\) , \(b=\sqrt{y}-14\) , \(c=\sqrt{z}-15\)
Ta có hệ : \(\hept{\begin{cases}ab=2\\bc=6\\ac=3\end{cases}}\). Nhân các pt theo vế : \(\left(abc\right)^2=36\Leftrightarrow\orbr{\begin{cases}abc=6\\abc=-6\end{cases}}\)
TH1. Nếu abc = 6 thì kết hợp với mỗi pt ta được : \(\hept{\begin{cases}c=3\\b=2\\a=1\end{cases}\Leftrightarrow}\hept{\begin{cases}x=196\\y=256\\z=324\end{cases}}\)
TH2. Nếu \(abc=-6\) thì tương tự ta được \(\hept{\begin{cases}a=-1\\b=-2\\c=-3\end{cases}\Leftrightarrow}\hept{\begin{cases}x=144\\y=144\\z=144\end{cases}}\)
Vậy ................................................
CHIU THOI
K NHA @@@@@@@ Nguyễn Phúc Lộc
Theo đầu bài ta có:
\(\hept{\begin{cases}\left(\sqrt{x}-13\right)\left(\sqrt{y}-14\right)=2\\\left(\sqrt{y}-14\right)\left(\sqrt{z}-15\right)=6\\\left(\sqrt{z}-15\right)\left(\sqrt{x}-13\right)=3\end{cases}}\)
\(\Rightarrow\left(\sqrt{x}-13\right)\left(\sqrt{y}-14\right)\cdot\left(\sqrt{y}-14\right)\left(\sqrt{z}-15\right)\cdot\left(\sqrt{z}-15\right)\left(\sqrt{x}-13\right)=2\cdot6\cdot3\)
\(\Rightarrow\left(\sqrt{x}-13\right)\left(\sqrt{y}-14\right)\left(\sqrt{z}-15\right)\cdot\left(\sqrt{x}-13\right)\left(\sqrt{y}-14\right)\left(\sqrt{z}-15\right)=36\)
\(\Rightarrow\left[\left(\sqrt{x}-13\right)\left(\sqrt{y}-14\right)\left(\sqrt{z}-15\right)\right]^2=36\)
\(\Rightarrow\hept{\begin{cases}\left(\sqrt{x}-13\right)\left(\sqrt{y}-14\right)\left(\sqrt{z}-15\right)=6\\\left(\sqrt{x}-13\right)\left(\sqrt{y}-14\right)\left(\sqrt{z}-15\right)=-6\end{cases}}\)
Từ đây ta xảy ra 2 trường hợp
TH1: Nếu \(\left(\sqrt{x}-13\right)\left(\sqrt{y}-14\right)\left(\sqrt{z}-15\right)=6\) thì:
\(\sqrt{x}-13=\frac{\left(\sqrt{x}-13\right)\left(\sqrt{y}-14\right)\left(\sqrt{z}-15\right)}{\left(\sqrt{y}-14\right)\left(\sqrt{z}-15\right)}=\frac{6}{6}=1\)
\(\Rightarrow\sqrt{x}=14\)
\(\Rightarrow x=196\)
\(\sqrt{y}-14=\frac{\left(\sqrt{x}-13\right)\left(\sqrt{y}-14\right)\left(\sqrt{z}-15\right)}{\left(\sqrt{x}-13\right)\left(\sqrt{z}-15\right)}=\frac{6}{3}=2\)
\(\Rightarrow\sqrt{y}=16\)
\(\Rightarrow y=256\)
\(\sqrt{z}-15=\frac{\left(\sqrt{x}-13\right)\left(\sqrt{y}-14\right)\left(\sqrt{z}-15\right)}{\left(\sqrt{x}-13\right)\left(\sqrt{y}-14\right)}=\frac{6}{2}=3\)
\(\Rightarrow\sqrt{z}=18\)
\(\Rightarrow z=324\)
\(\Rightarrow\hept{\begin{cases}x=196\\y=256\\z=324\end{cases}}\)