Với m = √2, phương trình (**) trở thành: 0x = 0
Phương trình nghiệm đúng với mọi x ∈ R, khi đó y = 2x – √2
Vậy với m = √2, hệ (I) có vô số nghiệm dạng (x ; 2x - √2), x ∈ R
Với m = √2, phương trình (**) trở thành: 0x = 0
Phương trình nghiệm đúng với mọi x ∈ R, khi đó y = 2x – √2
Vậy với m = √2, hệ (I) có vô số nghiệm dạng (x ; 2x - √2), x ∈ R
Giải hệ phương trình 2 x − y = m 4 x − m 2 y = 2 2 trong mỗi trường hợp sau:
a) m = -√2;
b) m = √2;
c) m = 1.
Giải hệ phương trình 2 x - y = m 4 x - m 2 y = 2 2 trong mỗi trường hợp sau:
m = -√2;
Cho hệ phương trình :
\(\left\{{}\begin{matrix}mx-y=2\\x+my=1\end{matrix}\right.\)
a) Giải hệ phương trình theo tham số m.
b) Trong trường hợp hệ phương trình có nghiệm duy nhất (x, y). Tìm các giá trị của m để x + y = -1.
Bài 1 Cho hệ phương trình mx+4y=10-m và x+y=4
a, giải hệ phương trình khi m= căn 2
b, giải và biện luận hệ phương trình đã cho theo tham số m
c, trong trường hợp hệ có nghiệm duy nhất (x;y) tìm các giá trị của m để:
i, y-5x=-4. ii, x<1 và y>0
Bài 2: Cho hệ phương trình 2x+3y=m và 2x-3y=6 (m là tham số không âm)
a, giải hệ phương trình với m=3
b, tìm các giá trị của m để nghiệm (x;y) của hệ phương trình thoả mãn điều kiện x>0, y>0
Cho hệ phương trình: x + m x = m + 1 1 m x + y = 3 m - 1 2 Trong trường hợp hệ có nghiệm duy nhất (x; y) thì điểm M (x; y) luôn chạy trên đường thẳng nào dưới đây?
A. y = -x - 2
B. y = x + 2
C. y = x - 2
D. y = 2 - x
Bài 1: Giải hệ phương trình sau
\(\left\{{}\begin{matrix}\dfrac{1}{2x-y}+\left(x+3y\right)=\dfrac{3}{2}\\\dfrac{4}{2x-y}-5\left(x+3y\right)=-2\end{matrix}\right.\)
Bài 2: Cho phương trình: x\(^2\)+(m-1)x-m\(^2\)-2=0
a) CMR: phương trình luôn có 2 nghiệm phân biệt \(\forall\)m
b) Tìm m để biểu thức A=\(\left(\dfrac{x_1}{x_2}\right)^3+\left(\dfrac{x_2}{x_1}\right)^3\) đạt giá trị lớn nhất.
1) {x^2+2x^2=3 {2x^2+3x^2=5 2) giải theo m {x+y=2m+1 {x-y=1 3)giải theo m {x +2y=3m+2 {2x+y=3m+2 4) cho hệ. {x+3y=4m+4 {2x+y=3m+3 Tìm m để hệ có nghiệm (x,y) thỏa mãn x+y=4 HỆ PHƯƠNG TRÌNH HẾT Ạ Giúp mik với nhé
Cho hệ phương trình m x − y = m 2 2 x + m y = − m 3 + 2 m + 2 . Trong mọi trường hợp hệ có nghiệm duy nhất, tính x – y theo m
A. x − y = m 4 − 2 m 2 + 2
B. x − y = m 4 + 4 m + 2 m 2 + 2
C. x − y = m 4 + 2 m 2 + 2
D. x − y = − m 4 + 2 m 2 + 2
cho hệ phương trình:
x+2y=2
mx-y=m(m là tham số)
a) giải và biện luận hệ phương trình đã cho theo m
b) Trong trg hợp hệ phương trình có 1 nghiệm duy nhất.(x,y).Tìm hệ thức liên hệ giữa x và y không phụ thuộc vào m