a. \(\sqrt{1-x^2}=x-1\)
<=> 1 - x2 = (x - 1)2
<=> (1 - x)(1 + x) - (x - 1)2 = 0
<=> (1 - x)(1 + x) + (1 - x)2 = 0
<=> (1 - x)(1 + x + 1 - x) = 0
<=> 2(1 - x) = 0
<=> 1 - x = 0
<=> -x = -1
<=> x = 1
c. (Tương tự a)
b. \(\sqrt{x^2+4x+4}=x-2\)
<=> \(\sqrt{\left(x+2\right)^2}=x-2\)
<=> \(|x+2|=x-2\)
<=> \(\left[{}\begin{matrix}x+2=-\left(x-2\right)\\x+2=x-2\end{matrix}\right.\)
<=> \(\left[{}\begin{matrix}x+2=-x+2\\x+2-x+2=0\end{matrix}\right.\)
<=> \(\left[{}\begin{matrix}x+x-2+2=0\\4=0\left(Vlí\right)\end{matrix}\right.\)
<=> 2x = 0
<=> x = 0
d, f,h. (tương tự b)
e. \(\sqrt{x^2-4}+2-x=0\)
<=> \(\sqrt{x^2-4}=x-2\)
(Tiếp theo như câu a)
g. \(\sqrt{\left(2x+4\right)\left(x-1\right)}=x+1\)
<=> (2x + 4)(x - 1) = (x + 1)2
<=> 2x2 - 2x + 4x - 4 = x2 + 2x + 1
<=> 2x2 - x2 - 2x + 4x - 2x - 4 - 1 = 0
<=> x2 - 5 = 0
<=> x2 = 5
<=> x = \(\sqrt{5}\)