a, \(\dfrac{4x-10-9x+3}{6}< \dfrac{12-4x-10x+5}{20}\Leftrightarrow\dfrac{-5x-7}{6}< \dfrac{-14x+17}{20}\)
\(\Rightarrow-50x-70< -42x+51\Leftrightarrow-8x-121< 0\Leftrightarrow x>-\dfrac{121}{8}\)
b, \(x^2-6x+9-2\left(x^2-1\right)=x-x^2\Leftrightarrow-x^2-6x+11=x-x^2\Leftrightarrow-7x+11=0\Leftrightarrow x=\dfrac{11}{7}\)
a: \(\Leftrightarrow20\left(2x-5\right)-30\left(3x-1\right)< 12\left(3-x\right)-15\left(2x-1\right)\)
=>40x-100-90x+30<36-12x-30x+15
=>-50x-70<-42x+51
=>-8x<121
=>x>-121/8
b: \(\Leftrightarrow x^2-6x+9-2\left(x^2-1\right)-x+x^2=0\)
\(\Leftrightarrow2x^2-7x+9-2x^2+2=0\)
=>11-7x=0
hay x=11/7
a: ⇔20(2x−5)−30(3x−1)<12(3−x)−15(2x−1)⇔20(2x−5)−30(3x−1)<12(3−x)−15(2x−1)
=>40x-100-90x+30<36-12x-30x+15
=>-50x-70<-42x+51
=>-8x<121
=>x>-121/8
b: ⇔x2−6x+9−2(x2−1)−x+x2=0⇔x2−6x+9−2(x2−1)−x+x2=0
⇔2x2−7x+9−2x2+2=0⇔2x2−7x+9−2x2+2=0
=>11-7x=0
hay x=11/7