\(|x-6|=-5x+9\)
Xét \(x\ge6\)thì \(pt< =>x-6=-5x+9\)
\(< =>x-6+5x-9=0\)
\(< =>6x-15=0\)
\(< =>x=\frac{15}{6}\)(ktm)
Xét \(x< 6\)thì \(pt< =>x-6=5x-9\)
\(< =>4x-9+6=0\)
\(< =>4x-3=0< =>x=\frac{3}{4}\)(tm)
Vậy ...
\(|x+1|=x^2+x\)
Xét \(x\ge-1\)thì \(pt< =>x+1=x^2+x\)
\(< =>x^2+x-x-1=0\)
\(< =>\left(x-1\right)\left(x+1\right)=0\)
\(< =>\orbr{\begin{cases}x=1\\x=-1\end{cases}\left(tm\right)}\)
Xét \(x< -1\)thì \(pt< =>-x-1=x^2+x\)
\(< =>x^2+2x+1=0\)
\(< =>\left(x+1\right)^2=0\)
\(< =>x=-1\left(ktm\right)\)
Vậy ...
\(|x^2-2x|+4=2x\)
\(< =>|x\left(x-2\right)|+4=2x\)
\(< =>|x||x-2|=2x-4\)
Xét \(x< 0\)thì \(pt< =>x\left(x-2\right)=2x-4\)
\(< =>x^2-2x-2x+4=0\)
\(< =>x=2\)(ktm)
Xét \(2>x\ge0\)thì \(pt< =>2x-x^2=2x-4\)
\(< =>x^2-4=0< =>\orbr{\begin{cases}x=2\\x=-2\end{cases}}\left(ktm\right)\)
Xét \(x\ge2\)thì \(pt< =>x\left(x-2\right)=2x-4\)
\(< =>x^2-2x-2x+4=0\)
\(< =>x=2\left(tm\right)\)
Vậy ...