\(a,\sqrt{2-x}-\sqrt{x^2-4}=0\)
\(\Leftrightarrow\sqrt{2-x}=\sqrt{x^2-4}\)
\(\Leftrightarrow\left(\sqrt{2-x}\right)^2=\left(\sqrt{x^2-4}\right)^2\)
\(\Leftrightarrow2-x=x^2-4\)
\(\Leftrightarrow x^2+x-6=0\)
\(\Leftrightarrow\left(x-2\right)\left(x+3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-3\end{matrix}\right.\)
\(b,\sqrt{x^2-3x+1}=\sqrt{x+1}\)
\(\Leftrightarrow\left(\sqrt{x^2-3x+1}\right)^2=\left(\sqrt{x+1}\right)^2\)
\(\Leftrightarrow x^2-3x+1=x+1\)
\(\Leftrightarrow x^2-4x=0\)
\(\Leftrightarrow x\left(x-4\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=4\end{matrix}\right.\)