⇔ (x + 3)(x – 3) + 2.3 = 3x(1 – x)
⇔ x 2 − 9 + 6 = 3 x − 3 x 2 ⇔ x 2 − 9 + 6 − 3 x + 3 x 2 = 0 ⇔ 4 x 2 − 3 x − 3 = 0
Có a = 4; b = -3; c = -3 ⇒ Δ = ( - 3 ) 2 – 4 . 4 . ( - 3 ) = 57 > 0
Phương trình có hai nghiệm
Điều kiện xác định: x ≠ 5; x ≠ 2.
Quy đồng và khử mẫu ta được :
(x + 2)(2 – x) + 3(2 – x)(x – 5) = 6(x – 5)
⇔ 4 − x 2 + 6 x − 3 x 2 − 30 + 15 x = 6 x − 30 ⇔ 4 − x 2 + 6 x − 3 x 2 − 30 + 15 x − 6 x + 30 = 0 ⇔ − 4 x 2 + 15 x + 4 = 0
Có a = -4; b = 15; c = 4 ⇒ Δ = 15 2 – 4 . ( - 4 ) . 4 = 289 > 0
Phương trình có hai nghiệm phân biệt:
Cả hai giá trị đều thỏa mãn điều kiện.
Vậy phương trình có tập nghiệm
Điều kiện xác định: x ≠ -1; x ≠ -2.
Quy đồng và khử mẫu ta được:
4 ⋅ ( x + 2 ) = − x 2 − x + 2 ⇔ 4 x + 8 = − x 2 − x + 2 ⇔ 4 x + 8 + x 2 + x − 2 = 0 ⇔ x 2 + 5 x + 6 = 0
Có a = 1; b = 5; c = 6 ⇒ Δ = 5 2 – 4 . 1 . 6 = 1 > 0
⇒ Phương trình có hai nghiệm phân biệt:
Chỉ có nghiệm x 2 = - 3 thỏa mãn điều kiện xác định.
Vậy phương trình có nghiệm x = -3.