Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Nguyễn Thảo My

Giai các bpt sau:

1) \(^{x^2\le|1-\frac{2}{x^2}|}\)

2) \(\frac{|x^2-4x|+3}{x^2+|x-5|}\ge1\)

Trương  Tiền  Phương
26 tháng 12 2019 lúc 20:50

1) ta có: \(x^2\le\left|1-\frac{2}{x^2}\right|\)                            ( *)

+ nếu \(x^2\ge2\)

từ (*) \(\Rightarrow x^2\le1-\frac{2}{x^2}\)

\(\Leftrightarrow x^2-1+\frac{2}{x^2}\le0\)

\(\Rightarrow x^4-x^2+2\le0\)         (vì \(x^2\ge0\))

\(\Leftrightarrow\left(x^2-\frac{1}{4}\right)^2+\frac{7}{4}\le0\)  ( vô lý )

+ nếu \(x^2\le2\)

tứ (*) \(\Rightarrow x^2\le\frac{2}{x^2}-1\)

\(\Leftrightarrow x^2-\frac{2}{x^2}+1\le0\)

\(\Rightarrow x^4-2+x^2\le0\)        (vì \(x^2\ge0\))

\(\Leftrightarrow\left(x^2-1\right)\left(x^2+2\right)\le0\)

\(\Leftrightarrow x^2-1\le0\)      ( vì \(x^2+2\)> 0 )

\(\Leftrightarrow x^2\le1\)

\(\Leftrightarrow-1\le x\le1\)

Vậy: \(-1\le x\le1\)

Khách vãng lai đã xóa
Trương  Tiền  Phương
26 tháng 12 2019 lúc 21:20

Ta có : \(\frac{\left|x^2-4x\right|+3}{x^2+\left|x-5\right|}\ge1\)

\(\Leftrightarrow\left|x^2-4x\right|+3\ge x^2+\left|x-5\right|\)

\(\Leftrightarrow\left|x^2-4x\right|+3-x^2-\left|x-5\right|\ge0\)   (1)

+ nếu x= 0. từ pt (1) => 3 \(\ge\)0 ( đúng )

+ nếu x < 4 và x \(\ne\)0.

từ pt (1) => 4x - x2  + 3 - x2 - ( 5 - x ) \(\ge\)0

\(\Leftrightarrow-2x^2+5x-2\ge0\)

\(\Leftrightarrow2x^2-5x+2\le0\)

\(\Leftrightarrow\left(x-2\right)\left(2x-1\right)\le0\)

\(\orbr{\begin{cases}\hept{\begin{cases}x-2\ge0\\2x-1\le0\end{cases}}\\\hept{\begin{cases}x-2\le0\\2x-1\ge0\end{cases}}\end{cases}}\)   TH 1: 

\(\hept{\begin{cases}x-2\ge0\\2x-1\le0\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}x\ge2\\x\le\frac{1}{2}\end{cases}}\)( vô lý ) 

    TH 2:

\(\hept{\begin{cases}x-2\le0\\2x-1\ge0\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}x\le2\\x\ge\frac{1}{2}\end{cases}}\)\(\Leftrightarrow\)\(\frac{1}{2}\le x\le2\)  ( thỏa mãn x< 4 )

+ nếu \(4\le x< 5\)

từ pt (1) => x2 - 4x + 3 - x- ( 5 - x ) \(\ge0\)

\(\Leftrightarrow-3x-2\ge0\)

\(\Leftrightarrow3x+2\le0\)

\(\Leftrightarrow x\le-\frac{2}{3}\)( không thỏa man \(4\le x< 5\))

+ nếu \(x\ge5\)

từ pt (1) => x2 - 4x + 3 - x2 - ( x -5 ) \(\ge\)0

\(\Leftrightarrow-5x+8\ge0\)

\(\Leftrightarrow5x\le8\)
\(\Leftrightarrow x\le\frac{8}{5}\)  ( không thỏa mãn \(x\ge5\))

vậy: bpt có nghiệm là \(\frac{1}{2}\le x\le2\)

Khách vãng lai đã xóa

Các câu hỏi tương tự
Riêu Ngọc Diệu Hoa
Xem chi tiết
BÙI VĂN LỰC
Xem chi tiết
Nguyễn Thị Thúy Vy
Xem chi tiết
Trần Phúc Khang
Xem chi tiết
meocon
Xem chi tiết
Cù Nhật Hoàng
Xem chi tiết
Hi Mn
Xem chi tiết
Nguyễn Thị Thúy Vy
Xem chi tiết
Hoàng Kiều Diễm
Xem chi tiết