Ta có: (x + 4)(5x – 1) > 5 x 2 + 16x + 2
⇔ 5 x 2 – x + 20x – 4 > 5 x 2 + 16x + 2
⇔ 5 x 2 – x + 20x – 5 x 2 – 16x > 2 + 4
⇔ 3x > 6
⇔ x > 2
Vậy tập nghiệm của bất phương trình là S = {x|x > 2}
Ta có: (x + 4)(5x – 1) > 5 x 2 + 16x + 2
⇔ 5 x 2 – x + 20x – 4 > 5 x 2 + 16x + 2
⇔ 5 x 2 – x + 20x – 5 x 2 – 16x > 2 + 4
⇔ 3x > 6
⇔ x > 2
Vậy tập nghiệm của bất phương trình là S = {x|x > 2}
Giải các bất phương trình sau và biểu diễn tập nghiệm trên trục số:
a.3x-5 >15-x b.3(x-2).(x+2)<3x^2+x
c.(2x+1)^2+(1-x).3x<hoặc=(x+2)^2
d.5x-20/3 - 2x^2+x/2 > x.(1-3x)/3 -5x/4
e.4-2x <hoặc= 3x-6
f.(x+4).(5x-1)>5x^2+16x+2
g)x.(2x-1)-8<5-2x(1-x)
h)3x-1/4 - 3.(x-2)/8 - 1>5-3x/2
Giải các bất phương trình sau và biểu diễn tập nghiệm trên trục số:
a.3x-5 >15-x b.3(x-2).(x+2)<3x^2+x
c.(2x+1)^2+(1-x).3x<hoặc=(x+2)^2
d.5x-20/3 - 2x^2+x/2 > x.(1-3x)/3 -5x/4
e.4-2x <hoặc= 3x-6
f.(x+4).(5x-1)>5x^2+16x+2
g)x.(2x-1)-8<5-2x(1-x)
h)3x-1/4 - 3.(x-2)/8 - 1>5-3x/2
Bài 2 (1,0 điểm). Giải phương trình và bất phương trình sau: a) |5x| = - 3x + 2 b) 6x – 2 < 5x + 3 Bài 3 (1,0 điểm.) Giải bất phương trình b) x – 3 x – 4 x –5 x – 6 ——— + ——– + ——– +——–
Giải các bất phương trình sau
a) 5x(x-3)2-5(x-1)3+15(x-4)(x+4)< hoặc = 10
b) (3x-2)(9x2+6x+4)+27x(\(\dfrac{1}{3}\)-x)(\(\dfrac{1}{3}\)+x)> hoặc = 1
Giải các bất phương trình và biểu diễn tập nghiệm trên trục số: a, 5x+10<=0. b,2x+4>3x+3. C, 2x+4=>2(x+1)-3. d, 2(x+1)<5(x-2)-3x.
Giải các phương trình và bất phương trình sau
a) 2x + 5 = 2 - x
b) | x-7| = 2x + 3
c) 4/x+2 - 4x-6/4x-x3 = x-3/x(x-2)
d) 1-2x/4 - 1 < 1-5x/8
e) 3 - 5x/10 = 1+ x+1/3
f) 1-2x/4 - 2 < 1-5x/8
Bài 3.giải các phương trình sau bằng cách đưa về phương trình tích.
a) (3x+1)(7x+3)=(5x-7)(3x+1)
b) x^2+10x+25-4x(x+5)=0
c) (4x-5)^2(16x^2-25)=0
d) (4x+3)^2=4(x^2-2x+1)
e) x^2-11x=28=0
f) 3x^3-3x^2-6x=0
giải các bất phương trình sau
a, x^3+5x^2+7x-12>0
b, x^5+x^4-15x^3-5x^2+34x<-24
Bài 4: Giải các bất phương trình sau rồi biểu diễn tập nghiệm trên trục số:
a) 3x+2 > 2b-3
b)5x-1 > 4x+3
c)2-x/3 > 3-2x/5