Số tự nhiên 2 chữ số \(\overline{xy}=10x+y\)
Hai lần chữ số hàng chục hơn chữ số hàng đơn vị : \(2x-y=1\left(1\right)\)
Khi viết ngược lại :
\(10y+x-\left(10x+y\right)=27\)
\(\Rightarrow10y+x-10x-y=27\)
\(\Rightarrow-9x+9y=27\left(2\right)\)
\(\left(1\right),\left(2\right)\) ta có hệ phương trình
\(\left\{{}\begin{matrix}2x-y=1\\-9x+9y=27\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}18x-9y=9\\-18x+18y=54\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}9y=63\\2x-y=1\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}y=7\\x=\dfrac{y+1}{2}\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=4\\y=7\end{matrix}\right.\)
Vậy số tự nhiên đó là 47