\(x^2+6x+10\\ =x^2+2.3.x+9+1\\ =\left(x+3\right)^2+1\\ \)
Ta có
\(\left(x+3\right)^2\ge0\forall x\\ 1>0\\ =>\left(x+3\right)^2+1>0\forall x\)
hay \(x^2+6x+10>0\)
\(x^2+6x+10>0\)
ta được : \(x^2+6x+10=x^2+2.3.x+9+1=(x+3)^2+1>0\)
\(A,=x^2-6x+10\)
\(=x^2-6x+9+1\)
\(=(x-3)^2+1\)
\((x-3)^2\ge0\)
⇒ \((x-3)^2+1\ge1>0\)
Vậy A > 0 với mọi x