Phương trình hoành độ giao điểm của (P ) và trục hoành:
x2+ 3x+m=0 (1)
+ Để đồ thị cắt trục hoành tại hai điểm phân biệt khi phương trình (1) có hai nghiệm phân biệt
Chọn D.
Phương trình hoành độ giao điểm của (P ) và trục hoành:
x2+ 3x+m=0 (1)
+ Để đồ thị cắt trục hoành tại hai điểm phân biệt khi phương trình (1) có hai nghiệm phân biệt
Chọn D.
Biết đồ thị hàm số (P): y = x 2 − ( m 2 + 1)x − 1 cắt trục hoành tại hai điểm phân biệt có hoành độ x 1 ; x 2 . Tìm giá trị của tham số mm để biểu thức T = x 1 + x 2 đạt giá trị nhỏ nhất.
A. m > 0
B. m < 0
C. m = 0
D. Không xác định được
cho hàm số y=\(\sqrt{2x^2-2x-m}-x-1\)
có đồ thị (C)
tìm tất cả các giá trị nguyên dương của m để đồ thị (C) cắt trục hoành tại 2 điểm phân biệt
cho hàm số y=x2 - mx - m - 1 (m ϵ R) . Gọi S là tập hợp tất cả các giá trị của m để đồ thị đã cho cắt trục hoành tại 2 điểm phân biệt có hoành độ x1 ; x2 thỏa mãn |x1|+|x2|=4 . Tổng tất cả các phần tử của S là bao nhiêu
Tìm tất cả các giá trị thực của tham số b để đồ thị hàm số y = − 3 x 2 + bx − 3 cắt trục hoành tại hai điểm phân biệt
A. b < − 6 b > 6
B. − 6 < b < 6
C. b < − 3 b > 3
D. − 3 < b < 3
Tìm tất cả các giá trị thực của tham số b để đồ thị hàm số y = -3x2 + bx – 3 cắt trục hoành tại hai điểm phân biệt.
A. b < -6 hoặc b > 6.
B. –6 < b < 6.
C. b < -3 hoặc b > 3.
D. -3 < b < 3.
Cho hàm số y = \(\frac{x^2-mx+m}{x-m}\). Hãy xác định m sao cho:
a) Đồ thị của hàm số không cắt trục tung
b) Đồ thị của hàm số không cắt trục hoành
c) Đồ thị của hàm số cắt trục hoành tại 2 điểm phân biệt
Cho hàm số y=\(x^2-2\left(m+1\right)x+2m+1\) (1)
Tìm giá trị của tham số m để đồ thị hàm số (1) cắt trục Ox tại hai điểm phân biệt A,B và cắt trục Oy tại C sao cho tam giác ABC có diện tích bằng 3
Cho hàm số y = 2x + m + 1. Tìm giá trị thực của m để đồ thị hàm số cắt trục hoành tại điểm có hoành độ bằng 3.
A. m = 7
B. m = 3
C. m = -7
D. m = ± 7
Cho hàm số y = 2x + m + 1. Tìm giá trị thực của tham số m để đồ thị hàm số cắt trục hoành tại điểm có hoành độ bằng 3.
A. m = 7.
B. m = 3.
C. m = -7.
D.