Cho phương trình 3 x = a . 3 x cos ( π x ) - 9 . Có bao nhiêu giá trị thực của tham số a thuộc đoạn [ -2018; 2018] để phương trình đã cho có đúng một nghiệm thực?
A. 1
B. 2018
C. 0
D. 2
Giá trị nhỏ nhất và giá trị lớn nhất của hàm số y = sin x + cos x 2 sin x - cos x + 3 lần lượt là:
A. m = - 1 ; M = 1 2
B. m = -1; M = 2
C. m = - 1 2 ; M = 1
D. m = 1; M = 2
Biết ba số ln 2 ; ln 2 x − 1 ; ln 2 x + 3 lập thành một cấp số cộng. Hỏi x có giá trị gần số nào nhất trong các số sau?
A. 3
B. 2
C. 2,5
D. 3,5
Biết ba số ln 2 ; ln 2 x − 1 ; ln 2 x + 3 lập thành một cấp số cộng. Hỏi x có giá trị gần số nào nhất trong các số sau?
A. 3.
B. 2.
C. 2,5.
D. 3,5.
Cho các mệnh đề sau đây:
(1) Hàm số f ( x ) = log 2 2 x - log 2 x 4 + 4 có tập xác định D = [ 0 ; + ∞ )
(2) Hàm số y = log a x có tiệm cận ngang
(3) Hàm số y = log a x ; 0 < a < 1 và Hàm số y = log a x , a > 1 đều đơn điệu trên tập xác định của nó
(4) Bất phương trình: log 1 2 5 - 2 x 2 - 1 ≤ 0 có 1 nghiệm nguyên thỏa mãn.
(5) Đạo hàm của hàm số y = ln 1 - cos x là sin x 1 - cos x 2
Hỏi có bao nhiêu mệnh đề đúng:
A. 0
B. 2
C. 3
D.1
Biết hình phẳng giới hạn bởi đường thẳng y = x+3, trục hoành và đường thẳng x = m (m > 0) có diện tích bằng 8. Khi đó giá trị m gần giá trị nào nhất trong các giá trị sau?
A. 0
B. -2
C. 3
D. 5
Biết ∫ sin 2 x - cos 2 x 2 d x = x + a b cos 4 x + C với a,b là các số nguyên dương, a b là phân số tối giản và C ∈ ℝ . Giá trị của a+b bằng
A. 5
B. 4
C. 2
D. 3
Cho các số thực x,y thỏa mãn 2 x + 3 + y + 3 = 4 . Giá trị nhỏ nhất của x + 2 + y + 9 bằng
A. 6 + 17 2
B. 3
C. 3 10 2
D. 1 2 + 21
Cho các mệnh đề sau
(I) Hàm số f x = sin x x 2 + 1 là hàm số chẵn.
(II) Hàm số f x = 3 sin x + 4 cos x có giá trị lớn nhất là 5.
(III) Hàm số f x = tan x tuần hoàn với chu kì 2 π .
(IV) Hàm số f x = cos x đồng biến trên khoảng 0 ; π .
Trong các mệnh đề trên có bao nhiêu mệnh đề đúng?
A. 4.
B. 2.
C. 3.
D. 1.