Gọi M và N lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = - 1 + 2 . cos x 2 - 3 . sin x + cos x trên ℝ . Biểu thức M + N + 2 có giá trị bằng:
A. 0
B. 4 2 - 3
C. 2
D . 2 + 3 + 2
Tập hợp các giá trị của m để phương trình \(2\cos^2x-sinx+1-m=\)0 có đúng 5 nghiệm thuộc \([0;\frac{5\pi}{2})\)là nửa khoảng (a;b]. Tính tổng a + b.
AB là đoạn vuông góc chung của 2 đường thẳng ∆ , ∆ ' chéo nhau, A ∈ ∆ ; B ∈ ∆ ' , AB= a. M là điểm di động trên ∆ N là điểm di động trên ∆ ' . Đặt A M = m ; A N = n ( m ≥ 0 ; n ⩾ 0 ) Giả sử ta luôn có m 2 + n 2 = b với b>0; b không đổi. Xác định m, n để độ dài đoạn MN đạt giá trị lớn nhất.
1. hàm số y = 3cosx luôn nhận giá trị trong tập nào
2. tập xác định của hàm số y = cosx
3. tính giới hạn \(L=\lim\limits\dfrac{n^2-3n^3}{2n^3+5n-2}\)
4. tính giới hạn \(L=\lim\limits\left(3n^2+5n-3\right)\)
5. kết quả của giới hạn \(\lim\limits_{n\rightarrow+\infty}\left(n^3-2n^2+3n-4\right)\)
Cho hàm số f(n)= 1+3+6+10+...+ n ( n + 1 ) 2 ( n ∈ N * ) .
Biết lim f ( n ) ( 3 n + 1 ) ( 5 n 2 + 2 ) = a b ( a , b ∈ Z ) phân số này tối giản. Giá trị b - 5a là
A.50
B.45
C.85
D.60
1) cho dãy \(\left(u_n\right)\) xác định bởi \(u_n=2.3^n\) giá trị của \(u_{20}\) với mọi số nguyên dương là
A. 2.\(3^{19}\) B.\(2.3^{20}\) C.\(3^{20}\) D.\(2.3^{21}\)
2) cho dãy \(\left(u_n\right)\) xác định bởi \(u_n=3^n\) số hạng \(u_{n+1}\) là
A. \(3^n+1\) B.\(3^n+3\) C.\(3^n.3\) D.\(3\left(n+1\right)\)
3) cho dãy số \(\left(u_n\right)\) với \(u_n=4^n+2^n\) ba số hạng đầu tiên của dãy là
4) cho dãy số \(\left(u_n\right)\) n ϵ N* biết \(u_n=\dfrac{1}{n+1}\) ba số hạng đầu tiên của dãy số đó là
5) cho dãy số có các số hạng đầu tiên là 5,10,15,20,25,.. số hạng tổng quát của dãy số là
Tìm giá trị của m để phương trình \(\dfrac{sinx-m}{2cosx+\sqrt{3}}=0\) có đúng hai nghiệm thuộc \((0;\dfrac{5\pi}{2}]\)
tính giá trị biểu thức sau
a) \(A=\dfrac{25^6}{5^3}\)
b) \(B=32.\left(\dfrac{3}{2}\right)^5\)
c) \(C=\left(\dfrac{1}{3}\right)^4.3^{-3}\)
d) \(D=4^{-2}.\left(\dfrac{2}{5}\right)^5.5^4\)
e) \(E=9^{-5}:\left(\dfrac{5}{3}\right)^4.25^2\)
f) \(F=\left(\dfrac{5}{8}\right)^{-2}:4^2\)
g) \(G=\left(\dfrac{5}{3}\right)^3.\left(\dfrac{9}{2}\right)^2:\left(\sqrt{3}\right)^4\)
Cho n ≥ 2, n ∈ N thỏa mãn : A n 3 + C n 2 = 14 n . Giá trị của n là
A. 3.
B. 4.
C. 5.
D. 6.
Cho hàm số y = x 3 - 3 x + 2 có đồ thị (C) . Gọi d là đường thẳng đi qua A(3;20) và có hệ số góc m. Giá trị của m để đường thẳng cắt (C) tại 3 điểm phân biệt là