Cho hàm số f(n)= 1 1 . 2 . 3 + 1 2 . 3 . 4 + . . . + 1 n . ( n + 1 ) . ( n + 2 ) = n ( n + 3 ) 4 ( n + 1 ) ( n + 2 ) ,n∈N*. Kết quả giới hạn l i m ( 2 n 2 + 1 - 1 ) f ( n ) 5 n + 1 = a b b ∈ Z . Giá trị của a 2 + b 2 là
A. 101
B. 443
C. 363
D. 402
Trong không gian Oxyz, cho mặt cầu (S): x 2 + y 2 + z 2 - 4 x + 6 y - 3 = 0 và điểm A(2;1;-2). Đường thẳng d đi qua A, tiếp xúc với (S) tại M luôn nằm trên mặt nón (N) cố định. Tọa độ tâm đường tròn đáy của (N) là H(a;b;c). Giá trị 3a-2b+c bằng
A. 8.
B. 4
C. 2.
D. 6 5
Trong không gian Oxyz, cho hình bình hành ABCD với A(1; 2; 3), B(5; 0; -1), C(4; 3; 6) và D(a;b;c) Giá trị của a+b+c bằng
A. 3
B. 11
C. 15
D. 5
Biết rằng 1 1 . 2 . 3 + 1 2 . 3 . 4 + . . . + 1 n ( n + 1 ) ( n + 2 ) = a n 2 + b n c n 2 + d n + 16 trong đó a,b,c,d và n là các số nguyên dương.Tính giá trị của biểu thức T=a+b+c+d
A. 45
B.40
C. 38
D. 24
Giới hạn lim x → 3 x + 1 - 5 x + 1 x - 4 x - 3 bằng a b (phân số tối giản). Giá trị của a - b là:
A. 1
B. 1 9
C. -1
D. 2
Giá trị của l i m ( n + 2018 - n - 2018 ) là
A. 1
B. - ∞
C. + ∞
D. 0
Cho các số thực a, b, m, n sao cho 2 m + n < 0 và thỏa mãn điều kiện log 2 a 2 + b 2 + 9 = 1 + log 2 3 a + 2 b 9 − m .3 − n .3 − 4 2 m + n + ln 2 m + n + 2 2 + 1 = 81
Tìm giá trị nhỏ nhất của biểu thức P = a − m 2 + b − n 2
A. 2 5 − 2.
B. 2.
C. 5 − 2.
D. 2 5 .
Cho dãy số u n xác định bởi u n = 1 n 2 + 3 n 2 + . . . + 2 n - 1 n 2 , n ∈ ℕ * . Giá trị của l i m u n bằng
A. 0
B. -1
C. 2
D. 1
Trong không gian Oxyz, cho hai điểm A(3;-2;2), B(-2;2;0) và mặt phẳng (P):2x-y+2z-3=0. Xét các điểm M, N di động trên (P) sao cho MN = 1. Giá trị nhỏ nhất của biểu thức 2 M A 2 + 3 N B 2 bằng
A. 49,8
B. 45
C. 53
D. 55,8
Gọi S là tập hợp tất cả các giá trị thực của a sao cho đường thẳng y=a(x-1)-3 cắt đồ thị (C) của hàm số y = 2 x 3 - 3 x 2 - 2 tại ba điểm M,N,P(1;-3) và tiếp tuyến của (C) tại M,N vuông góc với nhau. Tổng các phần tử của S bằng
A. -1.
B. 1.
C. 2.
D. -2